-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreducedQRHouseholder.m
58 lines (48 loc) · 1.34 KB
/
reducedQRHouseholder.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
% 2019862s
% Assessed Coursework 1: Least Squares Fitting
function [Q,R] = reducedQRHouseholder(A)
% Store the dimensions of A.
[m, n] = size(A);
% Associate the matrix R with the input A initially.
R = A;
% Initialize an mxn unitary matrix Q, all entries are zeros.
Q = eye(m,n);
% Initialize matrix W to store vectors v
V = zeros(m,n);
% For loop over the columns.
for j = 1:n,
% Take j-th column of R.
x = R(j:m,j);
% Set sign(x(1))=1 if x(1)=0.
if x(1)==0,
s=1;
% Otherwise use formula as usual.
else
s=sign(x(1));
end
% Form the reflection vector.
x(1)=s*norm(x,2)+x(1);
% Associate vector v with x.
v=x;
% Normalize the reflection vector.
v = v./norm(v,2);
% Store the vectors in a matrix to be later used for
% implicit calculation of reducedQ.
V(j:m,j)=v;
% Form the upper triangular R by clearing entries below
% the diagonal in the j-th column at the j-th iteration.
% This is equivalent to left multiplying by the Q_k matrix.
R(j:m, j:n) = R(j:m, j:n) - ...
2*v*(v'*R(j:m, j:n));
end
% Implicitly calculate the product reducedQ*v by extracting
% v vectors from the matrix V
for i=1:n,
for k=n:-1:1;
Q(k:m,i) = Q(k:m,i) - 2*V(k:m,k)*...
(V(k:m,k)'*Q(k:m,i));
end
end
% Ensure to extract only non-zero rows from R
R=R(1:n,:);
end