-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcalcuation.py
141 lines (119 loc) · 5.94 KB
/
calcuation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import time
import calendar
import pandas as pd
from binance.client import Client
def profit_loss(market='BTC-USDT', start_date = '2020-01-01', end_date='2021-12-31', client=Client(), showlog=False):
import numpy as np
np.seterr(invalid='ignore')
try:
asset_base = market.split("-")[0]
asset_quote = market.split("-")[1]
except IndexError:
raise Exception(f"!!! Warning: Use dash '-' to split base and quote assets for {market}!")
symbol = asset_base + asset_quote
# Connect to Binance
try:
trades = client.get_my_trades(symbol = symbol)
except:
raise Exception(f"!!! Warning: Can't get orders for {symbol}! Read message above.")
# Create DataFrame
df = pd.DataFrame(trades, columns = ['time', 'symbol', 'isBuyer', 'price', 'qty', 'quoteQty', 'commission', 'commissionAsset'])
qty_base = 'qty_' + asset_base
qty_quote = 'qty_' + asset_quote
df.columns = ['time', 'symbol', 'side', 'price', qty_base, qty_quote, 'fee', 'fee_coin']
df.side = df.side.replace([True, False], [1, -1])
df = df.astype({'price': 'float', qty_base: 'float', qty_quote: 'float', 'fee': 'float'})
# Start from time
time_format = '%Y-%m-%d'
start_date_ms = int(calendar.timegm(time.strptime(start_date, time_format)) * 1000)
end_date_ms = int((calendar.timegm(time.strptime(end_date, time_format)) + 86400) * 1000)
df = df[(df.time >= start_date_ms) & (df.time <= end_date_ms)]
df.time = pd.to_datetime(df.time, unit='ms')
# Find time for getting market prices
time_now = time.gmtime(time.time())
day_now_ms = calendar.timegm((time_now.tm_year, time_now.tm_mon, time_now.tm_mday, 0, 0, 0, 0, 0, 0)) * 1000
prices_time = min(day_now_ms, end_date_ms)
# Get symbol price
try:
symbol_price = float(client.get_klines(symbol = symbol, interval = '1m', startTime=prices_time, limit = 1)[0][4])
except:
print(f"Something wrong with request of {symbol} price. Please try again.")
# Get quote-USD price
if asset_quote == 'USDC' or asset_quote == 'USDT' or asset_quote == 'BUSD':
usd_price = 1
else:
try:
usd_price = float(client.get_klines(symbol = asset_quote + 'USDT', interval = '1m', startTime=prices_time, limit = 1)[0][4])
except:
print(f"Something wrong with the request of {asset_quote}USDT price. Please try again.")
# Get BNB-quote price
if asset_quote == 'BNB':
bnb_price = 1
else:
try:
bnb_price = float(client.get_klines(symbol = 'BNB' + asset_quote, interval = '1m', startTime = prices_time, limit = 1)[0][4])
except:
print(f"Something wrong with the request of BNB{asset_quote} price. Please try again.")
# Summary
days = int((prices_time - start_date_ms)/(1000 * 86400))
average_buy = df[df.side == 1][qty_quote].sum()/df[df.side == 1][qty_base].sum()
average_sell = df[df.side == -1][qty_quote].sum()/df[df.side == -1][qty_base].sum()
total_volume = df[qty_quote].sum()
# Delta
delta_base = (df[qty_base] * -df.side).sum()
delta_quote = (df[qty_quote] * -df.side).sum()
# Fees
fee_bnb = df[df.fee_coin == 'BNB'].fee.sum()
fee_quote = -df.fee.sum()
fee_base = -(df.fee / df.price).sum()
# Totals
total_percent = ((df[qty_quote][df.side == -1].sum() / (df[qty_quote][df.side == 1].sum())) - 1) * 100
total_base = (delta_base + delta_base * 0.002)
total_quote = (total_base * symbol_price)
prices_time_utc = time.strftime('%Y-%m-%d %H:%M', time.gmtime(prices_time/1000))
df.side = df.side.replace([1, -1], ['BUY', 'SELL'])
df.reset_index(drop=True, inplace=True)
if showlog :
if df.empty:
print(f"No trades found for {symbol} from {start_date} till {end_date}")
else:
print(f"\nTrades gathered for {symbol}:")
print(f"Summary for {symbol} for period [{start_date} - {end_date}]:")
print(f" Days: {days}")
print(f" Trades executed: {df.time.count()}")
print(f" Total volume traded ({asset_quote}): {round(total_volume, 8)}")
print(f" Average buy price: {round(average_buy, 8)}")
print(f" Average sell price: {round(average_sell, 8)}")
print(f"\nTrading delta:")
print(f" Delta {asset_base}: {round(delta_base, 8)}")
print(f" Delta {asset_quote}: {round(delta_quote, 8)}")
print(f"\nFees:")
print(f" Fees {asset_base}: {round(fee_base, 8)}")
print(f" Fees {asset_quote}: {round(fee_quote, 8)}")
print(f" Fees BNB: {round(fee_bnb, 8)}")
print(f"\nPrices at the end of the period [{prices_time_utc}]:")
print(f" Price {symbol}: {symbol_price}")
print(f" Price {asset_quote}USDT: {usd_price}")
print(f" Price BNB{asset_quote}: {bnb_price}")
print(f"\nTotal profit:")
print(f" Total profit ({asset_base}): {round(total_base, 8)}, , {round(total_percent, 2)}%")
print(f" Total profit ({asset_quote}): {round(total_quote, 8)}")
time.sleep(1)
return {
'days':days,
'trades_executed':df.time.count(),
'average_buy_price': round(average_buy, 8),
'average_sell_price': round(average_sell, 8),
'delta_asset_base': round(delta_base, 8),
'delta_asset_quote': round(delta_quote, 8),
'fees_asset_base': round(fee_base, 8),
'fees_asset_quote': round(fee_quote, 8),
'fees_bnb': round(fee_bnb, 8),
'base_price_end_of_period': symbol_price,
'quote_price_end_of_period': usd_price,
'bnb_price_end_of_period':bnb_price,
'total_profit(quote)': round(total_quote, 8),
'total_profit(base)' : round(total_base, 8),
'total_volume_traded': round(total_volume, 8),
'trades':df,
}