-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFigure_1b.R
executable file
·112 lines (75 loc) · 4.06 KB
/
Figure_1b.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
library(NMF)
library(rsvd)
library(Rtsne)
library(ggplot2)
library(cowplot)
library(sva)
library(igraph)
library(cccd)
# Figure 1
### Load all the required functions for this analysis
source("Fxns.R")
## Downloading UMI count data
if(file.exists('./data/GSE92332_atlas_UMIcounts.txt.gz')){
print('File exiists!')
}else{
download.file("ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE92nnn/GSE92332/suppl/GSE92332_atlas_UMIcounts.txt.gz", destfile="GSE92332_atlas_UMIcounts.txt.gz")
}
## Reading UMI count data from file
atlas_umis = read.delim("./data/GSE92332_atlas_UMIcounts.txt.gz")
info(sprintf("Data dimensions: %s" , paste(dim(atlas_umis), collapse = "x")))
# Get variable genes(select variables)
v = get.variable.genes(atlas_umis, min.cv2 = 100)
var.genes = as.character(rownames(v)[v$p.adj<0.05])
# Batch correction (ComBat)
#Check whether there is a batch effect
get_field = function(string,field=1,delim="_", fixed=T) return(strsplit(string,delim, fixed=fixed)[[1]][field])
batch.labels = factor(unlist(lapply(colnames(atlas_umis), get_field, 1,"_")))
print(table(batch.labels))
atlas_tpm = data.frame(log2(1+tpm(atlas_umis)))
## take mean tpm across batches to show batch effect
batch_mean_tpm = group.means(counts = atlas_tpm, groups = batch.labels)
x = batch_mean_tpm[, 1]
y = batch_mean_tpm[,2]
expr.cor = round(cor(x,y),2)
#smoothScatter(x, y, nrpoints=Inf, pch=16, cex=0.25, main=sprintf("Before batch correction, correlation between \ntwo illustrative batches is %s", expr.cor),
# xlab="All genes Batch 2, mean log2(TPM+1)", ylab="All genes Batch 1, mean log2(TPM+1)")
print(head(atlas_tpm[1:10,1:10]))
# Compensate for batch effect using ComBat
# Takes a few minutes
atlas_tpm_norm = batch.normalise.comBat(counts = as.matrix(atlas_tpm), batch.groups = batch.labels)
batch_mean_tpm_norm = group.means(counts = atlas_tpm_norm, groups = batch.labels)
x = batch_mean_tpm_norm[, 1]
y = batch_mean_tpm_norm[,2]
expr.cor = round(cor(x,y),2)
#smoothScatter(x, y, nrpoints=Inf, pch=16, cex=0.25, main=sprintf("After batch correction, correlation between \ntwo illustrative batches is %s", expr.cor),
# xlab="All genes Batch 2, mean log2(TPM+1)", ylab="All genes Batch 1, mean log2(TPM+1)")
# Dimensionality reduction
# Run (randomized) PCA, t-SNE
## Run the rpca really take long time
#pca = rpca(t(atlas_tpm_norm[var.genes,]), center=T, scale=T, retx=T, k=100)$x #use selected variables for PCA
pca = read.delim(file="atlas_pca_scores.txt")
#barnes_hut_tsne = Rtsne(pca[, 1:13], check_duplicates=T, pca=FALSE, #dont run PCA again
# initial_dims = 13, perplexity = 20, max_iter = 20000, verbose=T, whiten=F)
#tsne.rot = barnes_hut_tsne$Y
tsne.rot = read.delim("atlas_tsne.txt")
# Test for significant PCs. To avoid very long runtimes, run on a high memory server with lots of cores (n.cores).
y = sig.pcs.perm(dat=t(atlas_umis[var.genes,]), center=T, scale=T, max.pc=100, B=1000, n.cores=20, randomized=T)
# Unsupervised clustering
## Run kNN-graph clustering
# build cell-cell euclidean distance matrix using significant PC scores
dm = as.matrix(dist(pca[, 1:13]))
# build nearest neighbor graph
knn = build_knn_graph(dm, k = 200)
clustering = cluster_graph(knn)$partition
# merge a spurious cluster (cluster 16 is only a single cell) into the most similar cluster
clustering = merge_clusters(clustering, c(8, 16))
## confirm that clusters are extremely similar to those in the paper (infomap is a random-walk based alg, so there may begetwd minor differences)
clusters_from_paper = factor(unlist(lapply(colnames(atlas_umis), get_field, 3,"_")))
overlap = as.data.frame.matrix(table(clusters_from_paper, clustering))
overlap = round(sweep(overlap,2,colSums(overlap),`/`),2)
overlap = overlap[,apply(overlap, 1, FUN=which.max)]
aheatmap(overlap, color = cubehelix1.16, border_color = list("cell"="white"), txt=overlap, Colv = NA, Rowv = NA)
# Visualize the clustering overlaid onto the t-SNE (Figure 1b)
x = data.frame(tsne.rot, clustering)
ggplot(x, aes(x=tSNE_1, y=tSNE_2, color=clustering)) + geom_point() + scale_color_manual(values=brewer16)