-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFigure_2c.R
86 lines (69 loc) · 3.11 KB
/
Figure_2c.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
library(rsvd)
library(Rtsne)
library(ggplot2)
library(cowplot)
library(sva)
library(igraph)
library(cccd)
library(KernSmooth)
library(beeswarm)
library(stringr)
library(reshape2)
library(destiny)
library(RColorBrewer)
library(rgl)
palette(brewer.pal(6, 'Spectral'))
source('Fxns.R')
## Figure f
Regional_UMIs<-load_data("./data/GSE92332_Regional_UMIcounts.txt.gz")
Regional_UMIs<-Regional_UMIs[which(unlist(apply(Regional_UMIs,1,sum))>0),]
Regional_tpm<-data.frame(log2(1+tpm(Regional_UMIs)))
#region.var.genes<-get.variable.genes_cvdiff(Regional_tpm)
regional.v = get.variable.genes(Regional_UMIs, min.cv2 = 100)
regional.var.genes = as.character(rownames(regional.v)[regional.v$p.adj<0.05])
regional.genes<-rownames(Regional_tpm)
region_groups<-unlist(lapply(colnames(Regional_tpm),function(x)return(str_split(x,'_')[[1]][2])))
cell.groups<-unlist(lapply(colnames(Regional_tpm),function(x)return(str_split(x,'_')[[1]][4])))
region.sample.names<-colnames(Regional_tpm)
# Figure 2.c
all.diffusion.matrix<-cbind(data.frame(Cell=region.sample.names[cell.groups%in%c('TA','Stem','EP','Enterocyte')]),
t(Regional_tpm[regional.var.genes,cell.groups%in%c('TA','Stem','EP','Enterocyte')]))
all.ct<-as.ExpressionSet(all.diffusion.matrix)
#phenoData(all.ct)$regions<-as.factor(region_groups[cell.groups%in%c('TA','Stem','EP','Enterocyte')])
all.dif<-DiffusionMap(all.ct,verbose = T)
save(all.dif,file='./data/Regional_UMIs_DiffusionMap_4.RData')
# load('./data/Regional_UMIs_DiffusionMap_4.RData')
plot.DiffusionMap(all.dif,dims = c(1,3,4),
col =as.factor(region_groups[cell.groups%in%c('TA','Stem','EP','Enterocyte')]),pch=20)
plot.DiffusionMap(all.dif,dims = c(1,3,4),
col =as.factor(cell.groups[cell.groups%in%c('TA','Stem','EP','Enterocyte')]),pch=20)
# rgl : failed ???
# plot3d(eigenvectors(all.dif)[,c(1,4,3)],
# col=as.integer(as.factor(region_groups[cell.groups%in%c('TA','Stem','EP','Enterocyte')])),pch=20)
# rgl.close()
DiffusionMap_Meantpm<-function(gene,DMap.obj,tpm.data,all.cells=cell.groups,
cells=c('TA','Stem','EP','Enterocyte'),do.plot=TRUE){
# gene : the gene use for caculate mean expression
# DMap.obj : the object from DiffusionMap function
# tpm.data : the TPM data:gene must in the data gene.names
# all.cells: the all cells of TPM data
# cells: the cells use to select
# do.plot: whether plot
if(!gene%in%rownames(tpm.data)){
cat(sprintf('%s is not in TPM data\n',gene))
do.plot=FALSE
return(FALSE)
}else{
gene.mean.tpm<-tpm.data[gene,all.cells%in%cells]
if(do.plot){
plot.DiffusionMap(DMap.obj,dims = c(1,3,4),
col =as.numeric(gene.mean.tpm),pch=20,legend_main = gene)
}else{
return(gene.mean.tpm)
}
}
}
Gkn3<-DiffusionMap_Meantpm(gene = 'Gkn3',DMap.obj = all.dif,tpm.data = Regional_tpm)
Fabp1<-DiffusionMap_Meantpm(gene = 'Fabp1',DMap.obj = all.dif,tpm.data = Regional_tpm)
Bex1<-DiffusionMap_Meantpm(gene = 'Bex1',DMap.obj = all.dif,tpm.data = Regional_tpm)
Fabp6<-DiffusionMap_Meantpm(gene = 'Fabp6',DMap.obj = all.dif,tpm.data = Regional_tpm)