-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathhparams.py
123 lines (108 loc) · 3.81 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import tensorflow as tf
from text import symbols
class HParams(object):
hparamdict = []
def __init__(self, **hparams):
self.hparamdict = hparams
for k, v in hparams.items():
setattr(self, k, v)
def __repr__(self):
return "HParams(" + repr([(k, v) for k, v in self.hparamdict.items()]) + ")"
def __str__(self):
return ','.join([(k + '=' + str(v)) for k, v in self.hparamdict.items()])
def parse(self, params):
for s in params.split(","):
k, v = s.split("=", 1)
k = k.strip()
t = type(self.hparamdict[k])
if t == bool:
v = v.strip().lower()
if v in ['true', '1']:
v = True
elif v in ['false', '0']:
v = False
else:
raise ValueError(v)
else:
v = t(v)
self.hparamdict[k] = v
setattr(self, k, v)
return self
def create_hparams(hparams_string=None, verbose=False):
"""Create model hyperparameters. Parse nondefault from given string."""
hparams = HParams(
################################
# Experiment Parameters #
################################
epochs=500000,
iters_per_checkpoint=200,
seed=1234,
dynamic_loss_scaling=True,
fp16_run=False,
distributed_run=False,
dist_backend="nccl",
dist_url="tcp://localhost:54321",
cudnn_enabled=True,
cudnn_benchmark=False,
ignore_layers=['embedding.weight'],
################################
# Data Parameters #
################################
load_mel_from_disk=False,
training_files='filelists/David_Attenborough_v4_prepped.csv',
validation_files='filelists/David_Attenborough_v4_val.csv',
text_cleaners=['english_cleaners'],
################################
# Audio Parameters #
################################
max_wav_value=32768.0,
sampling_rate=22050,
filter_length=1024,
hop_length=256,
win_length=1024,
n_mel_channels=80,
mel_fmin=0.0,
mel_fmax=8000.0,
################################
# Model Parameters #
################################
n_symbols=len(symbols),
symbols_embedding_dim=512,
# Encoder parameters
encoder_kernel_size=5,
encoder_n_convolutions=3,
encoder_embedding_dim=512,
# Decoder parameters
n_frames_per_step=1, # currently only 1 is supported
decoder_rnn_dim=1024,
prenet_dim=256,
max_decoder_steps=10000,
gate_threshold=0.5,
p_attention_dropout=0.1,
p_decoder_dropout=0.1, #change to 0 when doing inference
# Attention parameters
attention_rnn_dim=1024,
attention_dim=128,
# Location Layer parameters
attention_location_n_filters=32,
attention_location_kernel_size=31,
# Mel-post processing network parameters
postnet_embedding_dim=512,
postnet_kernel_size=5,
postnet_n_convolutions=5,
################################
# Optimization Hyperparameters #
################################
use_saved_learning_rate=False,
learning_rate=1e-6,
weight_decay=1e-6,
grad_clip_thresh=1.0,
batch_size=112,
mask_padding=True # set model's padded outputs to padded values
)
if hparams_string:
tf.compat.v1.logging.info('Parsing command line hparams: %s', hparams_string)
hparams.parse(hparams_string)
if verbose:
tf.compat.v1.logging.info('Final parsed hparams: %s', hparams.values())
return hparams