forked from tensorlayer/SRGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·400 lines (357 loc) · 22 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#! /usr/bin/python
# -*- coding: utf8 -*-
import time
import tensorflow as tf
import tensorlayer as tl
from tensorlayer.layers import *
# from tensorflow.python.ops import variable_scope as vs
# from tensorflow.python.ops import math_ops, init_ops, array_ops, nn
# from tensorflow.python.util import nest
# from tensorflow.contrib.rnn.python.ops import core_rnn_cell
# https://github.com/david-gpu/srez/blob/master/srez_model.py
def SRGAN_g(t_image, is_train=False, reuse=False):
""" Generator in Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
feature maps (n) and stride (s) feature maps (n) and stride (s)
"""
w_init = tf.random_normal_initializer(stddev=0.02)
b_init = None # tf.constant_initializer(value=0.0)
g_init = tf.random_normal_initializer(1., 0.02)
with tf.variable_scope("SRGAN_g", reuse=reuse) as vs:
# tl.layers.set_name_reuse(reuse) # remove for TL 1.8.0+
n = InputLayer(t_image, name='in')
n = Conv2d(n, 64, (3, 3), (1, 1), act=tf.nn.relu, padding='SAME', W_init=w_init, name='n64s1/c')
temp = n
# B residual blocks
for i in range(16):
nn = Conv2d(n, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c1/%s' % i)
nn = BatchNormLayer(nn, act=tf.nn.relu, is_train=is_train, gamma_init=g_init, name='n64s1/b1/%s' % i)
nn = Conv2d(nn, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c2/%s' % i)
nn = BatchNormLayer(nn, is_train=is_train, gamma_init=g_init, name='n64s1/b2/%s' % i)
nn = ElementwiseLayer([n, nn], tf.add, name='b_residual_add/%s' % i)
n = nn
n = Conv2d(n, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c/m')
n = BatchNormLayer(n, is_train=is_train, gamma_init=g_init, name='n64s1/b/m')
n = ElementwiseLayer([n, temp], tf.add, name='add3')
# B residual blacks end
n = Conv2d(n, 256, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, name='n256s1/1')
n = SubpixelConv2d(n, scale=2, n_out_channel=None, act=tf.nn.relu, name='pixelshufflerx2/1')
n = Conv2d(n, 256, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, name='n256s1/2')
n = SubpixelConv2d(n, scale=2, n_out_channel=None, act=tf.nn.relu, name='pixelshufflerx2/2')
n = Conv2d(n, 3, (1, 1), (1, 1), act=tf.nn.tanh, padding='SAME', W_init=w_init, name='out')
return n
def SRGAN_g2(t_image, is_train=False, reuse=False):
""" Generator in Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
feature maps (n) and stride (s) feature maps (n) and stride (s)
96x96 --> 384x384
Use Resize Conv
"""
w_init = tf.random_normal_initializer(stddev=0.02)
b_init = None # tf.constant_initializer(value=0.0)
g_init = tf.random_normal_initializer(1., 0.02)
size = t_image.get_shape().as_list()
with tf.variable_scope("SRGAN_g", reuse=reuse) as vs:
# tl.layers.set_name_reuse(reuse) # remove for TL 1.8.0+
n = InputLayer(t_image, name='in')
n = Conv2d(n, 64, (3, 3), (1, 1), act=tf.nn.relu, padding='SAME', W_init=w_init, name='n64s1/c')
temp = n
# B residual blocks
for i in range(16):
nn = Conv2d(n, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c1/%s' % i)
nn = BatchNormLayer(nn, act=tf.nn.relu, is_train=is_train, gamma_init=g_init, name='n64s1/b1/%s' % i)
nn = Conv2d(nn, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c2/%s' % i)
nn = BatchNormLayer(nn, is_train=is_train, gamma_init=g_init, name='n64s1/b2/%s' % i)
nn = ElementwiseLayer([n, nn], tf.add, name='b_residual_add/%s' % i)
n = nn
n = Conv2d(n, 64, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='n64s1/c/m')
n = BatchNormLayer(n, is_train=is_train, gamma_init=g_init, name='n64s1/b/m')
n = ElementwiseLayer([n, temp], tf.add, name='add3')
# B residual blacks end
# n = Conv2d(n, 256, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, name='n256s1/1')
# n = SubpixelConv2d(n, scale=2, n_out_channel=None, act=tf.nn.relu, name='pixelshufflerx2/1')
#
# n = Conv2d(n, 256, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, name='n256s1/2')
# n = SubpixelConv2d(n, scale=2, n_out_channel=None, act=tf.nn.relu, name='pixelshufflerx2/2')
## 0, 1, 2, 3 BILINEAR NEAREST BICUBIC AREA
n = UpSampling2dLayer(n, size=[size[1] * 2, size[2] * 2], is_scale=False, method=1, align_corners=False, name='up1/upsample2d')
n = Conv2d(n, 64, (3, 3), (1, 1), padding='SAME', W_init=w_init, b_init=b_init, name='up1/conv2d') # <-- may need to increase n_filter
n = BatchNormLayer(n, act=tf.nn.relu, is_train=is_train, gamma_init=g_init, name='up1/batch_norm')
n = UpSampling2dLayer(n, size=[size[1] * 4, size[2] * 4], is_scale=False, method=1, align_corners=False, name='up2/upsample2d')
n = Conv2d(n, 32, (3, 3), (1, 1), padding='SAME', W_init=w_init, b_init=b_init, name='up2/conv2d') # <-- may need to increase n_filter
n = BatchNormLayer(n, act=tf.nn.relu, is_train=is_train, gamma_init=g_init, name='up2/batch_norm')
n = Conv2d(n, 3, (1, 1), (1, 1), act=tf.nn.tanh, padding='SAME', W_init=w_init, name='out')
return n
def SRGAN_d2(t_image, is_train=False, reuse=False):
""" Discriminator in Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
feature maps (n) and stride (s) feature maps (n) and stride (s)
"""
w_init = tf.random_normal_initializer(stddev=0.02)
b_init = None
g_init = tf.random_normal_initializer(1., 0.02)
lrelu = lambda x: tl.act.lrelu(x, 0.2)
with tf.variable_scope("SRGAN_d", reuse=reuse) as vs:
# tl.layers.set_name_reuse(reuse) # remove for TL 1.8.0+
n = InputLayer(t_image, name='in')
n = Conv2d(n, 64, (3, 3), (1, 1), act=lrelu, padding='SAME', W_init=w_init, name='n64s1/c')
n = Conv2d(n, 64, (3, 3), (2, 2), act=lrelu, padding='SAME', W_init=w_init, b_init=b_init, name='n64s2/c')
n = BatchNormLayer(n, is_train=is_train, gamma_init=g_init, name='n64s2/b')
n = Conv2d(n, 128, (3, 3), (1, 1), act=lrelu, padding='SAME', W_init=w_init, b_init=b_init, name='n128s1/c')
n = BatchNormLayer(n, is_train=is_train, gamma_init=g_init, name='n128s1/b')
n = Conv2d(n, 128, (3, 3), (2, 2), act=lrelu, padding='SAME', W_init=w_init, b_init=b_init, name='n128s2/c')
n = BatchNormLayer(n, is_train=is_train, gamma_init=g_init, name='n128s2/b')
n = Conv2d(n, 256, (3, 3), (1, 1), act=lrelu, padding='SAME', W_init=w_init, b_init=b_init, name='n256s1/c')
n = BatchNormLayer(n, is_train=is_train, gamma_init=g_init, name='n256s1/b')
n = Conv2d(n, 256, (3, 3), (2, 2), act=lrelu, padding='SAME', W_init=w_init, b_init=b_init, name='n256s2/c')
n = BatchNormLayer(n, is_train=is_train, gamma_init=g_init, name='n256s2/b')
n = Conv2d(n, 512, (3, 3), (1, 1), act=lrelu, padding='SAME', W_init=w_init, b_init=b_init, name='n512s1/c')
n = BatchNormLayer(n, is_train=is_train, gamma_init=g_init, name='n512s1/b')
n = Conv2d(n, 512, (3, 3), (2, 2), act=lrelu, padding='SAME', W_init=w_init, b_init=b_init, name='n512s2/c')
n = BatchNormLayer(n, is_train=is_train, gamma_init=g_init, name='n512s2/b')
n = FlattenLayer(n, name='f')
n = DenseLayer(n, n_units=1024, act=lrelu, name='d1024')
n = DenseLayer(n, n_units=1, name='out')
logits = n.outputs
n.outputs = tf.nn.sigmoid(n.outputs)
return n, logits
def SRGAN_d(input_images, is_train=True, reuse=False):
w_init = tf.random_normal_initializer(stddev=0.02)
b_init = None # tf.constant_initializer(value=0.0)
gamma_init = tf.random_normal_initializer(1., 0.02)
df_dim = 64
lrelu = lambda x: tl.act.lrelu(x, 0.2)
with tf.variable_scope("SRGAN_d", reuse=reuse):
tl.layers.set_name_reuse(reuse)
net_in = InputLayer(input_images, name='input/images')
net_h0 = Conv2d(net_in, df_dim, (4, 4), (2, 2), act=lrelu, padding='SAME', W_init=w_init, name='h0/c')
net_h1 = Conv2d(net_h0, df_dim * 2, (4, 4), (2, 2), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='h1/c')
net_h1 = BatchNormLayer(net_h1, act=lrelu, is_train=is_train, gamma_init=gamma_init, name='h1/bn')
net_h2 = Conv2d(net_h1, df_dim * 4, (4, 4), (2, 2), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='h2/c')
net_h2 = BatchNormLayer(net_h2, act=lrelu, is_train=is_train, gamma_init=gamma_init, name='h2/bn')
net_h3 = Conv2d(net_h2, df_dim * 8, (4, 4), (2, 2), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='h3/c')
net_h3 = BatchNormLayer(net_h3, act=lrelu, is_train=is_train, gamma_init=gamma_init, name='h3/bn')
net_h4 = Conv2d(net_h3, df_dim * 16, (4, 4), (2, 2), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='h4/c')
net_h4 = BatchNormLayer(net_h4, act=lrelu, is_train=is_train, gamma_init=gamma_init, name='h4/bn')
net_h5 = Conv2d(net_h4, df_dim * 32, (4, 4), (2, 2), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='h5/c')
net_h5 = BatchNormLayer(net_h5, act=lrelu, is_train=is_train, gamma_init=gamma_init, name='h5/bn')
net_h6 = Conv2d(net_h5, df_dim * 16, (1, 1), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='h6/c')
net_h6 = BatchNormLayer(net_h6, act=lrelu, is_train=is_train, gamma_init=gamma_init, name='h6/bn')
net_h7 = Conv2d(net_h6, df_dim * 8, (1, 1), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='h7/c')
net_h7 = BatchNormLayer(net_h7, is_train=is_train, gamma_init=gamma_init, name='h7/bn')
net = Conv2d(net_h7, df_dim * 2, (1, 1), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='res/c')
net = BatchNormLayer(net, act=lrelu, is_train=is_train, gamma_init=gamma_init, name='res/bn')
net = Conv2d(net, df_dim * 2, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='res/c2')
net = BatchNormLayer(net, act=lrelu, is_train=is_train, gamma_init=gamma_init, name='res/bn2')
net = Conv2d(net, df_dim * 8, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=b_init, name='res/c3')
net = BatchNormLayer(net, is_train=is_train, gamma_init=gamma_init, name='res/bn3')
net_h8 = ElementwiseLayer([net_h7, net], combine_fn=tf.add, name='res/add')
net_h8.outputs = tl.act.lrelu(net_h8.outputs, 0.2)
net_ho = FlattenLayer(net_h8, name='ho/flatten')
net_ho = DenseLayer(net_ho, n_units=1, act=tf.identity, W_init=w_init, name='ho/dense')
logits = net_ho.outputs
net_ho.outputs = tf.nn.sigmoid(net_ho.outputs)
return net_ho, logits
def Vgg19_simple_api(rgb, reuse):
"""
Build the VGG 19 Model
Parameters
-----------
rgb : rgb image placeholder [batch, height, width, 3] values scaled [0, 1]
"""
VGG_MEAN = [103.939, 116.779, 123.68]
with tf.variable_scope("VGG19", reuse=reuse) as vs:
start_time = time.time()
print("build model started")
rgb_scaled = rgb * 255.0
# Convert RGB to BGR
if tf.__version__ <= '0.11':
red, green, blue = tf.split(3, 3, rgb_scaled)
else: # TF 1.0
# print(rgb_scaled)
red, green, blue = tf.split(rgb_scaled, 3, 3)
assert red.get_shape().as_list()[1:] == [224, 224, 1]
assert green.get_shape().as_list()[1:] == [224, 224, 1]
assert blue.get_shape().as_list()[1:] == [224, 224, 1]
if tf.__version__ <= '0.11':
bgr = tf.concat(3, [
blue - VGG_MEAN[0],
green - VGG_MEAN[1],
red - VGG_MEAN[2],
])
else:
bgr = tf.concat(
[
blue - VGG_MEAN[0],
green - VGG_MEAN[1],
red - VGG_MEAN[2],
], axis=3)
assert bgr.get_shape().as_list()[1:] == [224, 224, 3]
""" input layer """
net_in = InputLayer(bgr, name='input')
""" conv1 """
network = Conv2d(net_in, n_filter=64, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv1_1')
network = Conv2d(network, n_filter=64, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv1_2')
network = MaxPool2d(network, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool1')
""" conv2 """
network = Conv2d(network, n_filter=128, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv2_1')
network = Conv2d(network, n_filter=128, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv2_2')
network = MaxPool2d(network, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool2')
""" conv3 """
network = Conv2d(network, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_1')
network = Conv2d(network, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_2')
network = Conv2d(network, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_3')
network = Conv2d(network, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_4')
network = MaxPool2d(network, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool3')
""" conv4 """
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_1')
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_2')
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_3')
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_4')
network = MaxPool2d(network, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool4') # (batch_size, 14, 14, 512)
conv = network
""" conv5 """
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_1')
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_2')
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_3')
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_4')
network = MaxPool2d(network, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool5') # (batch_size, 7, 7, 512)
""" fc 6~8 """
network = FlattenLayer(network, name='flatten')
network = DenseLayer(network, n_units=4096, act=tf.nn.relu, name='fc6')
network = DenseLayer(network, n_units=4096, act=tf.nn.relu, name='fc7')
network = DenseLayer(network, n_units=1000, act=tf.identity, name='fc8')
print("build model finished: %fs" % (time.time() - start_time))
return network, conv
# def vgg16_cnn_emb(t_image, reuse=False):
# """ t_image = 244x244 [0~255] """
# with tf.variable_scope("vgg16_cnn", reuse=reuse) as vs:
# tl.layers.set_name_reuse(reuse)
#
# mean = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32, shape=[1, 1, 1, 3], name='img_mean')
# net_in = InputLayer(t_image - mean, name='vgg_input_im')
# """ conv1 """
# network = tl.layers.Conv2dLayer(net_in,
# act = tf.nn.relu,
# shape = [3, 3, 3, 64], # 64 features for each 3x3 patch
# strides = [1, 1, 1, 1],
# padding='SAME',
# name ='vgg_conv1_1')
# network = tl.layers.Conv2dLayer(network,
# act = tf.nn.relu,
# shape = [3, 3, 64, 64], # 64 features for each 3x3 patch
# strides = [1, 1, 1, 1],
# padding='SAME',
# name ='vgg_conv1_2')
# network = tl.layers.PoolLayer(network,
# ksize=[1, 2, 2, 1],
# strides=[1, 2, 2, 1],
# padding='SAME',
# pool = tf.nn.max_pool,
# name ='vgg_pool1')
# """ conv2 """
# network = tl.layers.Conv2dLayer(network,
# act = tf.nn.relu,
# shape = [3, 3, 64, 128], # 128 features for each 3x3 patch
# strides = [1, 1, 1, 1],
# padding='SAME',
# name ='vgg_conv2_1')
# network = tl.layers.Conv2dLayer(network,
# act = tf.nn.relu,
# shape = [3, 3, 128, 128], # 128 features for each 3x3 patch
# strides = [1, 1, 1, 1],
# padding='SAME',
# name ='vgg_conv2_2')
# network = tl.layers.PoolLayer(network,
# ksize=[1, 2, 2, 1],
# strides=[1, 2, 2, 1],
# padding='SAME',
# pool = tf.nn.max_pool,
# name ='vgg_pool2')
# """ conv3 """
# network = tl.layers.Conv2dLayer(network,
# act = tf.nn.relu,
# shape = [3, 3, 128, 256], # 256 features for each 3x3 patch
# strides = [1, 1, 1, 1],
# padding='SAME',
# name ='vgg_conv3_1')
# network = tl.layers.Conv2dLayer(network,
# act = tf.nn.relu,
# shape = [3, 3, 256, 256], # 256 features for each 3x3 patch
# strides = [1, 1, 1, 1],
# padding='SAME',
# name ='vgg_conv3_2')
# network = tl.layers.Conv2dLayer(network,
# act = tf.nn.relu,
# shape = [3, 3, 256, 256], # 256 features for each 3x3 patch
# strides = [1, 1, 1, 1],
# padding='SAME',
# name ='vgg_conv3_3')
# network = tl.layers.PoolLayer(network,
# ksize=[1, 2, 2, 1],
# strides=[1, 2, 2, 1],
# padding='SAME',
# pool = tf.nn.max_pool,
# name ='vgg_pool3')
# """ conv4 """
# network = tl.layers.Conv2dLayer(network,
# act = tf.nn.relu,
# shape = [3, 3, 256, 512], # 512 features for each 3x3 patch
# strides = [1, 1, 1, 1],
# padding='SAME',
# name ='vgg_conv4_1')
# network = tl.layers.Conv2dLayer(network,
# act = tf.nn.relu,
# shape = [3, 3, 512, 512], # 512 features for each 3x3 patch
# strides = [1, 1, 1, 1],
# padding='SAME',
# name ='vgg_conv4_2')
# network = tl.layers.Conv2dLayer(network,
# act = tf.nn.relu,
# shape = [3, 3, 512, 512], # 512 features for each 3x3 patch
# strides = [1, 1, 1, 1],
# padding='SAME',
# name ='vgg_conv4_3')
#
# network = tl.layers.PoolLayer(network,
# ksize=[1, 2, 2, 1],
# strides=[1, 2, 2, 1],
# padding='SAME',
# pool = tf.nn.max_pool,
# name ='vgg_pool4')
# conv4 = network
#
# """ conv5 """
# network = tl.layers.Conv2dLayer(network,
# act = tf.nn.relu,
# shape = [3, 3, 512, 512], # 512 features for each 3x3 patch
# strides = [1, 1, 1, 1],
# padding='SAME',
# name ='vgg_conv5_1')
# network = tl.layers.Conv2dLayer(network,
# act = tf.nn.relu,
# shape = [3, 3, 512, 512], # 512 features for each 3x3 patch
# strides = [1, 1, 1, 1],
# padding='SAME',
# name ='vgg_conv5_2')
# network = tl.layers.Conv2dLayer(network,
# act = tf.nn.relu,
# shape = [3, 3, 512, 512], # 512 features for each 3x3 patch
# strides = [1, 1, 1, 1],
# padding='SAME',
# name ='vgg_conv5_3')
# network = tl.layers.PoolLayer(network,
# ksize=[1, 2, 2, 1],
# strides=[1, 2, 2, 1],
# padding='SAME',
# pool = tf.nn.max_pool,
# name ='vgg_pool5')
#
# network = FlattenLayer(network, name='vgg_flatten')
#
# # # network = DropoutLayer(network, keep=0.6, is_fix=True, is_train=is_train, name='vgg_out/drop1')
# # new_network = tl.layers.DenseLayer(network, n_units=4096,
# # act = tf.nn.relu,
# # name = 'vgg_out/dense')
# #
# # # new_network = DropoutLayer(new_network, keep=0.8, is_fix=True, is_train=is_train, name='vgg_out/drop2')
# # new_network = DenseLayer(new_network, z_dim, #num_lstm_units,
# # b_init=None, name='vgg_out/out')
# return conv4, network