forked from emma-sjwang/BEAL
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
executable file
·170 lines (149 loc) · 6.24 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python
import argparse
import os
import os.path as osp
import torch.nn.functional as F
import torch
from torch.autograd import Variable
import tqdm
from dataloaders import fundus_dataloader as DL
from torch.utils.data import DataLoader
from dataloaders import custom_transforms as tr
from torchvision import transforms
from scipy.misc import imsave
from utils.Utils import *
from utils.metrics import *
from datetime import datetime
import pytz
from networks.deeplabv3 import *
import cv2
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model-file', type=str, default='./logs/train2/20181202_160326.365442/checkpoint_9.pth.tar',
help='Model path')
parser.add_argument(
'--dataset', type=str, default='Drishti-GS', help='test folder id contain images ROIs to test'
)
parser.add_argument('-g', '--gpu', type=int, default=0)
parser.add_argument(
'--data-dir',
default='/home/sjwang/ssd1T/fundus/domain_adaptation/',
help='data root path'
)
parser.add_argument(
'--out-stride',
type=int,
default=16,
help='out-stride of deeplabv3+',
)
parser.add_argument(
'--save-root-ent',
type=str,
default='./results/ent/',
help='path to save ent',
)
parser.add_argument(
'--save-root-mask',
type=str,
default='./results/mask/',
help='path to save mask',
)
parser.add_argument(
'--sync-bn',
type=bool,
default=True,
help='sync-bn in deeplabv3+',
)
parser.add_argument(
'--freeze-bn',
type=bool,
default=False,
help='freeze batch normalization of deeplabv3+',
)
parser.add_argument('--test-prediction-save-path', type=str,
default='./results/baseline/',
help='Path root for test image and mask')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
model_file = args.model_file
# 1. dataset
composed_transforms_test = transforms.Compose([
tr.Normalize_tf(),
tr.ToTensor()
])
db_test = DL.FundusSegmentation(base_dir=args.data_dir, dataset=args.dataset, split='test',
transform=composed_transforms_test)
test_loader = DataLoader(db_test, batch_size=1, shuffle=False, num_workers=1)
# 2. model
model = DeepLab(num_classes=2, backbone='mobilenet', output_stride=args.out_stride,
sync_bn=args.sync_bn, freeze_bn=args.freeze_bn).cuda()
if torch.cuda.is_available():
model = model.cuda()
print('==> Loading %s model file: %s' %
(model.__class__.__name__, model_file))
checkpoint = torch.load(model_file)
try:
model.load_state_dict(model_data)
pretrained_dict = checkpoint['model_state_dict']
model_dict = model_gen.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
model_gen.load_state_dict(model_dict)
except Exception:
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
print('==> Evaluating with %s' % (args.dataset))
val_cup_dice = 0.0
val_disc_dice = 0.0
timestamp_start = \
datetime.now(pytz.timezone('Asia/Hong_Kong'))
for batch_idx, (sample) in tqdm.tqdm(enumerate(test_loader),
total=len(test_loader),
ncols=80, leave=False):
data = sample['image']
target = sample['map']
img_name = sample['img_name']
if torch.cuda.is_available():
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
prediction, boundary = model(data)
prediction = torch.nn.functional.interpolate(prediction, size=(target.size()[2], target.size()[3]),
mode="bilinear")
boundary = torch.nn.functional.interpolate(boundary, size=(target.size()[2], target.size()[3]),
mode="bilinear")
data = torch.nn.functional.interpolate(data, size=(target.size()[2], target.size()[3]), mode="bilinear")
prediction = torch.sigmoid(prediction)
boundary = torch.sigmoid(boundary)
draw_ent(prediction.data.cpu()[0].numpy(), os.path.join(args.save_root_ent, args.dataset), img_name[0])
draw_mask(prediction.data.cpu()[0].numpy(), os.path.join(args.save_root_mask, args.dataset), img_name[0])
draw_boundary(boundary.data.cpu()[0].numpy(), os.path.join(args.save_root_mask, args.dataset), img_name[0])
prediction = postprocessing(prediction.data.cpu()[0], dataset=args.dataset)
target_numpy = target.data.cpu()
cup_dice = dice_coefficient_numpy(prediction[0, ...], target_numpy[0, 0, ...])
disc_dice = dice_coefficient_numpy(prediction[1, ...], target_numpy[0, 1, ...])
val_cup_dice += cup_dice
val_disc_dice += disc_dice
imgs = data.data.cpu()
for img, lt, lp in zip(imgs, target_numpy, [prediction]):
img, lt = untransform(img, lt)
save_per_img(img.numpy().transpose(1, 2, 0), os.path.join(args.test_prediction_save_path, args.dataset),
img_name[0],
lp, mask_path=None, ext="bmp")
val_cup_dice /= len(test_loader)
val_disc_dice /= len(test_loader)
print('''\n==>val_cup_dice : {0}'''.format(val_cup_dice))
print('''\n==>val_disc_dice : {0}'''.format(val_disc_dice))
with open(osp.join(args.test_prediction_save_path, 'test_log.csv'), 'a') as f:
elapsed_time = (
datetime.now(pytz.timezone('Asia/Hong_Kong')) -
timestamp_start).total_seconds()
log = [[args.model_file] + ['cup dice coefficence: '] + \
[val_cup_dice] + ['disc dice coefficence: '] + \
[val_disc_dice] + [elapsed_time]]
log = map(str, log)
f.write(','.join(log) + '\n')
if __name__ == '__main__':
main()