The project is based on the pytorch 1.9.0 with python 3.7.
We use a 3090 to train the LA and a 32G V100 to train the BRaTS19.
$ git clone https://github.com/yyliu01/TraCoCo.git
$ cd TraCoCo
- create conda env
$ conda env create -f tracoco.yml
- install the torch 1.9.0
$ conda activate tracoco # IF cuda version < 11.0 $ pip install torch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 # IF cuda version >= 11.0 (e.g., 30x or above) $ pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
- download the LA, Pancreas and BRaTs19 datasets from this google drive link.
- organize the filepath as the tree struct shown below.
TraCoCo/
├── Code
│ ├── UnetBRATS
│ ├── VnetLA
│ └── VnetPancreas
├── Datasets
│ ├── BRATS19
│ ├── Left_Atrium
│ └── Pancreas
├── docs
├── k8s_launch
│ └── jobs
└── scripts