-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathrml_lstm_classify.py
209 lines (168 loc) · 6.36 KB
/
rml_lstm_classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import numpy as np
import tflearn
import tensorflow as tf
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import sys
import operator
import cPickle
from numpy import linalg as la
maxlen = 128
snrs=""
mods=""
test_idx=""
lbl =""
def gendata(fp, nsamples):
global snrs, mods, test_idx, lbl
Xd = cPickle.load(open(fp,'rb'))
snrs,mods = map(lambda j: sorted(list(set(map(lambda x: x[j], Xd.keys())))), [1,0])
X = []
lbl = []
print mods, snrs
for mod in mods:
for snr in snrs:
X.append(Xd[(mod,snr)])
for i in range(Xd[(mod,snr)].shape[0]):
lbl.append((mod,snr))
X = np.vstack(X)
np.random.seed(2016)
n_examples = X.shape[0]
n_train = int(n_examples * 0.5)
train_idx = np.random.choice(range(0,n_examples), size=n_train, replace=False)
test_idx = list(set(range(0,n_examples))-set(train_idx))
X_train = X[train_idx]
X_test = X[test_idx]
def to_onehot(yy):
yy1 = np.zeros([len(yy), max(yy)+1])
yy1[np.arange(len(yy)),yy] = 1
return yy1
Y_train = to_onehot(map(lambda x: mods.index(lbl[x][0]), train_idx))
Y_test = to_onehot(map(lambda x: mods.index(lbl[x][0]), test_idx))
return (X_train,X_test,Y_train,Y_test)
def norm_pad_zeros(X_train,nsamples):
print "Pad:", X_train.shape
for i in range(X_train.shape[0]):
X_train[i,:,0] = X_train[i,:,0]/la.norm(X_train[i,:,0],2)
return X_train
def to_amp_phase(X_train,X_test,nsamples):
X_train_cmplx = X_train[:,0,:] + 1j* X_train[:,1,:]
X_test_cmplx = X_test[:,0,:] + 1j* X_test[:,1,:]
X_train_amp = np.abs(X_train_cmplx)
X_train_ang = np.arctan2(X_train[:,1,:],X_train[:,0,:])/np.pi
X_train_amp = np.reshape(X_train_amp,(-1,1,nsamples))
X_train_ang = np.reshape(X_train_ang,(-1,1,nsamples))
X_train = np.concatenate((X_train_amp,X_train_ang), axis=1)
X_train = np.transpose(np.array(X_train),(0,2,1))
X_test_amp = np.abs(X_test_cmplx)
X_test_ang = np.arctan2(X_test[:,1,:],X_test[:,0,:])/np.pi
X_test_amp = np.reshape(X_test_amp,(-1,1,nsamples))
X_test_ang = np.reshape(X_test_ang,(-1,1,nsamples))
X_test = np.concatenate((X_test_amp,X_test_ang), axis=1)
X_test = np.transpose(np.array(X_test),(0,2,1))
return (X_train, X_test)
xtrain1,xtest1,ytrain1,ytest1 = gendata("RML2016.10a_dict.dat",128)
xtrain1,xtest1 = to_amp_phase(xtrain1,xtest1,128)
xtrain1 = xtrain1[:,:maxlen,:]
xtest1 = xtest1[:,:maxlen,:]
xtrain1 = norm_pad_zeros(xtrain1,maxlen)
xtest1 = norm_pad_zeros(xtest1,maxlen)
X_train = xtrain1
X_test = xtest1
Y_train = ytrain1
Y_test = ytest1
print("--"*50)
print("Training data:",X_train.shape)
print("Training labels:",Y_train.shape)
print("Testing data",X_test.shape)
print("Testing labels",Y_test.shape)
print("--"*50)
def getFontColor(value):
if np.isnan(value):
return "black"
elif value < 0.2:
return "black"
else:
return "white"
def getConfusionMatrixPlot(true_labels, predicted_labels):
# Compute confusion matrix
cm = confusion_matrix(true_labels, predicted_labels)
cm_norm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
cm_norm = np.nan_to_num(cm_norm)
cm = np.round(cm_norm,2)
print(cm)
# create figure
fig = plt.figure()
plt.clf()
ax = fig.add_subplot(111)
ax.set_aspect(1)
ax.set_xlabel('Predicted label')
ax.set_ylabel('True label')
res = ax.imshow(cm, cmap=plt.cm.binary,
interpolation='nearest', vmin=0, vmax=1)
# add color bar
plt.colorbar(res)
# annotate confusion entries
width = len(cm)
height = len(cm[0])
for x in xrange(width):
for y in xrange(height):
ax.annotate(str(cm[x][y]), xy=(y, x), horizontalalignment='center',
verticalalignment='center', color=getFontColor(cm[x][y]))
# add genres as ticks
alphabet = mods
plt.xticks(range(width), alphabet[:width], rotation=30)
plt.yticks(range(height), alphabet[:height])
return plt
class MonitorCallback(tflearn.callbacks.Callback):
def __init__(self, model):
self.model = model
self.accuracy = 0.0
def on_epoch_end(self, training_state):
print "accuracy2:", training_state.val_acc
if self.accuracy<training_state.val_acc:
self.accuracy = training_state.val_acc
print "Model saved:", self.accuracy
self.model.save('lstm_apclaasify_newtf.tfl')
network = tflearn.input_data(shape=[None, maxlen, 2],name="inp")
network = tflearn.lstm(network, 128, return_seq=True, dynamic=True, dropout=(1, 0.8))
#network = tf.transpose(tf.stack(network),[1,0,2])
network = tflearn.lstm(network, 128, dynamic=True, dropout=(0.8,1))
network = tflearn.fully_connected(network, len(mods), activation='softmax',name="out")
network = tflearn.regression(network, optimizer='adam',
loss='categorical_crossentropy',
learning_rate=0.001)
model = tflearn.DNN(network,tensorboard_verbose=0)
monitorCallback = MonitorCallback(model)
Train = True
if Train:
model.fit(X_train, Y_train, n_epoch=80, shuffle=True,show_metric=True, batch_size=400,validation_set=(X_test, Y_test), run_id='radio_lstm', callbacks=monitorCallback)
else:
model.load('lstm_apclaasify_newtf.tfl')
classes = mods
acc={}
for snr in snrs:
test_SNRs = map(lambda x: lbl[x][1], test_idx)
test_X_i = X_test[np.where(np.array(test_SNRs)==snr)]
test_Y_i = Y_test[np.where(np.array(test_SNRs)==snr)]
# estimate classes
test_Y_i_hat = np.array(model.predict(test_X_i))
width = 4.1
height = width / 1.618
plt.figure(figsize=(width, height))
plt = getConfusionMatrixPlot(np.argmax(test_Y_i, 1), np.argmax(test_Y_i_hat, 1))
plt.gcf().subplots_adjust(bottom=0.15)
plt.savefig("./images/confmat_"+str(snr)+".pdf")
conf = np.zeros([len(classes),len(classes)])
confnorm = np.zeros([len(classes),len(classes)])
for i in range(0,test_X_i.shape[0]):
j = list(test_Y_i[i,:]).index(1)
k = int(np.argmax(test_Y_i_hat[i,:]))
conf[j,k] = conf[j,k] + 1
for i in range(0,len(classes)):
confnorm[i,:] = conf[i,:] / np.sum(conf[i,:])
plt.figure()
cor = np.sum(np.diag(conf))
ncor = np.sum(conf) - cor
print("Overall Accuracy: ", cor / (cor+ncor))
acc[snr] = 1.0*cor/(cor+ncor)
print(acc)