-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathnow-crypto-aes-batch-rw.c
791 lines (750 loc) · 26.2 KB
/
now-crypto-aes-batch-rw.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
/*
* Copyright (C) 2022-present Shanghai HPC-NOW Technologies Co., Ltd.
* This code is distributed under the license: MIT License
* Originally written by Zhenrong WANG
* mailto: zhenrongwang@live.com | wangzhenrong@hpc-now.com
*/
/*
* This is an AES implementation for this project. The method here is ECB (Electronic Codebook Book).
* ECB is not quite secure, compare to CBC.
* Encryption/Decryption is very important in any scenario processing sensitive infomation
* The code here is implemented based on FIPS-197 https://csrc.nist.gov/pubs/fips/197/final
* Without comprehensive validation, please *DO NOT* use the code in your project!
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <time.h>
#define CRYPTO_VERSION "0.3.0"
typedef unsigned char uint_8bit;
typedef unsigned short uint_16bit;
typedef unsigned int uint_32bit;
typedef unsigned long int uint_64bit;
//Each expanded key is in format of 0xAABBCCDD, so 4X8bit=32bit
typedef struct{
uint_32bit encryption_key[44];
int expansion_round;
} now_aes_key;
const uint_8bit s_box[256]={
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
const uint_8bit inv_s_box[256]={
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};
const uint_32bit round_con[10]={
0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000
};
//Get an 8-bit(1 byte) from a given 32 bit number.
uint_8bit get_byte(uint_32bit a, unsigned int n){
return (a>>(8*n))&0xFF;
}
//key=128bit, stored in an array width 16; so the element of the key array is 8bit each;
//key_length should be less than 16;
int key_expansion(uint_8bit* key, uint_8bit key_length, now_aes_key* AES_key){
int i,j;
uint_32bit a,b;
uint_8bit c,d,e,f;
if(key_length!=16){
return -1; //Illegal length
}
for(i=0;i<4;i++){
AES_key->encryption_key[i]&=0x00000000;
for(j=0;j<4;j++){
AES_key->encryption_key[i]+=((*(key+i*4+j)&0xFF)<<(24-j*8)); //Push the 4 0x numbers to a 32bit expanded key.
}
}
//Generate the other 40 expanded keys
for(i=4;i<44;i++){
AES_key->encryption_key[i]&=0x00000000;
a=AES_key->encryption_key[i-4];
b=AES_key->encryption_key[i-1];
if(i%4!=0){
AES_key->encryption_key[i]=a^b;
}
else{
c=s_box[get_byte(b,3)]; //Get the numbers from S-Box
d=s_box[get_byte(b,2)];
e=s_box[get_byte(b,1)];
f=s_box[get_byte(b,0)];
AES_key->encryption_key[i]=a^(((d<<24)&0xFF000000)^((e<<16)&0xFF0000)^((f<<8)&0xFF00)^(c&0xFF))^round_con[i/4-1]; //Push the numbers to 32bit number with rotation.
}
}
return 0;
}
//The key is an array with 4 32-bit numbers, aka, w[i]
void AddRoundKey(uint_8bit (*state)[4], uint_32bit *key){
int i,j;
for(j=0;j<4;j++){
for(i=0;i<4;i++){
state[i][j]^=get_byte(key[j],3-i);
}
}
}
//Assemble a 32bit number from 4 8bit numbers
uint_32bit assem_row(uint_8bit* short_nums){
return ((short_nums[0]<<24)&0xFF000000)^((short_nums[1]<<16)&0xFF0000)^((short_nums[2]<<8)&0xFF00)^((short_nums[3])&0xFF); //Push 4 8-bit integers to a 32-bit integer.
}
//Push 16 8bit number to state
void assem_state(uint_8bit (*state)[4], uint_8bit* head_pt){
uint_8bit i,j;;
for(i=0;i<4;i++){
for(j=0;j<4;j++){
state[j][i]=*(head_pt+i*4+j);
}
}
}
//Deassemble a 32bit number into 4 8bit numbers
void deassem_row(uint_32bit a, uint_8bit* short_nums){
for(int i=0;i<4;i++){
short_nums[i]=get_byte(a,3-i);
}
}
//Pull 16 8bit number to a one-dimensional array
void deassem_out(uint_8bit (*out)[4], uint_8bit* head_pt){
uint_8bit i,j;;
for(i=0;i<4;i++){
for(j=0;j<4;j++){
*(head_pt+i*4+j)=out[j][i];
}
}
}
//Rotate the 32-bit number a to another 32-bit number b, direction: left
int rot_left(uint_32bit a, uint_8bit n, uint_32bit* b){
uint_8bit a3=get_byte(a,3);
uint_8bit a2=get_byte(a,2);
uint_8bit a1=get_byte(a,1);
uint_8bit a0=get_byte(a,0);
if(n==0){
*b=a; //If no rotation, just copy the number and return 0
return 0;
}
else if(n==1){
*b=((a2<<24)&0xFF000000)^((a1<<16)&0xFF0000)^((a0<<8)&0xFF00)^(a3&0xFF); //Push the bytes to b, with rotation 1
return 0;
}
else if(n==2){
*b=((a1<<24)&0xFF000000)^((a0<<16)&0xFF0000)^((a3<<8)&0xFF00)^(a2&0xFF); //Push the bytes to b, with rotation 2
return 0;
}
else if(n==3){
*b=((a0<<24)&0xFF000000)^((a3<<16)&0xFF0000)^((a2<<8)&0xFF00)^(a1&0xFF); //Push the bytes to b, with rotation 3
return 0;
}
else{
return -1; //Make sure the rotation rounds<3
}
}
//Right-direction rotation is a reverse rotation to left.
int rot_right(uint_32bit a, uint_8bit n, uint_32bit* b){
return rot_left(a,4-n,b);
}
int ShiftRows(uint_8bit (*state)[4]){
int i;
uint_32bit a,b;
for(i=1;i<4;i++){
a=assem_row(state[i]);
if(rot_left(a,i,&b)!=0){
return -1;
}
deassem_row(b,state[i]);
}
return 0;
}
int InvShiftRows(uint_8bit (*state)[4]){
int i;
uint_32bit a,b;
for(i=1;i<4;i++){
a=assem_row(state[i]);
if(rot_right(a,i,&b)!=0){
return -1;
}
deassem_row(b,state[i]);
}
return 0;
}
uint_8bit GaloisMultiple2(uint_8bit a){
uint_8bit flag=(a>>7)&0x01;
if(flag==1){
return ((a<<1)&0xFF)^0x1B;
}
else{
return (a<<1)&0xFF;
}
}
uint_8bit GaloisMultipleGeneral(uint_8bit a, uint_8bit b){
uint_8bit c=0x00;
int i;
uint_8bit flag;
for(i=0;i<8;i++){
flag=b&0x01; //If the last bit is 1, then xor a, otherwise keep the result unchanged.
if(flag==1){
c^=a;
}
a=GaloisMultiple2(a);
b>>=1;
}
return c;
}
void SubBytes(uint_8bit (*state)[4]){
int i,j;
for(i=0;i<4;i++){
for(j=0;j<4;j++){
state[i][j]=s_box[state[i][j]];
}
}
}
void InvSubBytes(uint_8bit (*state)[4]){
int i,j;
for(i=0;i<4;i++){
for(j=0;j<4;j++){
state[i][j]=inv_s_box[state[i][j]];
}
}
}
void MixColumns(uint_8bit (*state)[4]){
const uint_8bit MixColumnMatrix[4][4] = {
{0x02, 0x03, 0x01, 0x01},
{0x01, 0x02, 0x03, 0x01},
{0x01, 0x01, 0x02, 0x03},
{0x03, 0x01, 0x01, 0x02}
};
uint_8bit temp[4][4];
uint_8bit s0,s1,s2,s3;
int i,j;
memcpy(temp,state,16*sizeof(uint_8bit)); //Use memcpy to eliminate the loop below
/*for(i=0;i<4;i++){
for(j=0;j<4;j++){
temp[i][j]=state[i][j];
}
}*/
for(i=0;i<4;i++){
//state[i][0]=GaloisMultipleGeneral(MixColumnMatrix[i][0],temp[0][0])^GaloisMultipleGeneral(MixColumnMatrix[i][1],temp[1][0])^GaloisMultipleGeneral(MixColumnMatrix[i][2],temp[2][0])^GaloisMultipleGeneral(MixColumnMatrix[i][3],temp[3][0]);
//state[i][1]=GaloisMultipleGeneral(MixColumnMatrix[i][0],temp[0][1])^GaloisMultipleGeneral(MixColumnMatrix[i][1],temp[1][1])^GaloisMultipleGeneral(MixColumnMatrix[i][2],temp[2][1])^GaloisMultipleGeneral(MixColumnMatrix[i][3],temp[3][1]);
//state[i][2]=GaloisMultipleGeneral(MixColumnMatrix[i][0],temp[0][2])^GaloisMultipleGeneral(MixColumnMatrix[i][1],temp[1][2])^GaloisMultipleGeneral(MixColumnMatrix[i][2],temp[2][2])^GaloisMultipleGeneral(MixColumnMatrix[i][3],temp[3][2]);
//state[i][3]=GaloisMultipleGeneral(MixColumnMatrix[i][0],temp[0][3])^GaloisMultipleGeneral(MixColumnMatrix[i][1],temp[1][3])^GaloisMultipleGeneral(MixColumnMatrix[i][2],temp[2][3])^GaloisMultipleGeneral(MixColumnMatrix[i][3],temp[3][3]);
for(j=0;j<4;j++){
s0=GaloisMultipleGeneral(MixColumnMatrix[i][0],temp[0][j]);
s1=GaloisMultipleGeneral(MixColumnMatrix[i][1],temp[1][j]);
s2=GaloisMultipleGeneral(MixColumnMatrix[i][2],temp[2][j]);
s3=GaloisMultipleGeneral(MixColumnMatrix[i][3],temp[3][j]);
state[i][j]=s0^s1^s2^s3;
}
}
}
void InvMixColums(uint_8bit (*state)[4]){
const uint_8bit InvMixColumnMatrix[4][4] = {
{0x0E, 0x0B, 0x0D, 0x09},
{0x09, 0x0E, 0x0B, 0x0D},
{0x0D, 0x09, 0x0E, 0x0B},
{0x0B, 0x0D, 0x09, 0x0E}
};
int i,j;
uint_8bit temp[4][4];
uint_8bit s0,s1,s2,s3;
memcpy(temp,state,16*sizeof(uint_8bit)); //Use memcpy to eliminate the loop below
/*for(i=0;i<4;i++){
for(j=0;j<4;j++){
temp[i][j]=state[i][j];
}
}*/
for(i=0;i<4;i++){
//state[i][0]=GaloisMultipleGeneral(MixColumnMatrix[i][0],temp[0][0])^GaloisMultipleGeneral(MixColumnMatrix[i][1],temp[1][0])^GaloisMultipleGeneral(MixColumnMatrix[i][2],temp[2][0])^GaloisMultipleGeneral(MixColumnMatrix[i][3],temp[3][0]);
//state[i][1]=GaloisMultipleGeneral(MixColumnMatrix[i][0],temp[0][1])^GaloisMultipleGeneral(MixColumnMatrix[i][1],temp[1][1])^GaloisMultipleGeneral(MixColumnMatrix[i][2],temp[2][1])^GaloisMultipleGeneral(MixColumnMatrix[i][3],temp[3][1]);
//state[i][2]=GaloisMultipleGeneral(MixColumnMatrix[i][0],temp[0][2])^GaloisMultipleGeneral(MixColumnMatrix[i][1],temp[1][2])^GaloisMultipleGeneral(MixColumnMatrix[i][2],temp[2][2])^GaloisMultipleGeneral(MixColumnMatrix[i][3],temp[3][2]);
//state[i][3]=GaloisMultipleGeneral(MixColumnMatrix[i][0],temp[0][3])^GaloisMultipleGeneral(MixColumnMatrix[i][1],temp[1][3])^GaloisMultipleGeneral(MixColumnMatrix[i][2],temp[2][3])^GaloisMultipleGeneral(MixColumnMatrix[i][3],temp[3][3]);
for(j=0;j<4;j++){
s0=GaloisMultipleGeneral(InvMixColumnMatrix[i][0],temp[0][j]);
s1=GaloisMultipleGeneral(InvMixColumnMatrix[i][1],temp[1][j]);
s2=GaloisMultipleGeneral(InvMixColumnMatrix[i][2],temp[2][j]);
s3=GaloisMultipleGeneral(InvMixColumnMatrix[i][3],temp[3][j]);
state[i][j]=s0^s1^s2^s3;
}
}
}
void print_state(uint_8bit (*state)[4]){
int i,j;
printf("\n");
for(i=0;i<4;i++){
for(j=0;j<4;j++){
printf("%x ",state[i][j]);
}
printf("\n");
}
printf("\n");
}
//Improved, move the key_expansion out of the encryption process
int aes_ecb_encryption_core(uint_8bit (*state)[4], uint_8bit (*out)[4], now_aes_key* AES_key){
if(state==NULL||out==NULL||AES_key==NULL){
return -1;
}
int i;
uint_32bit* key_pointer=AES_key->encryption_key;
AddRoundKey(state,key_pointer);
for(i=1;i<10;i++){
key_pointer+=4;
SubBytes(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(state,key_pointer);
}
key_pointer+=4;
SubBytes(state);
ShiftRows(state);
AddRoundKey(state,key_pointer);
memcpy(out,state,16*sizeof(uint_8bit));
/*for(i=0;i<4;i++){
for(j=0;j<4;j++){
out[i][j]=state[i][j];
}
}*/
return 0;
}
int aes_ecb_decryption_core(uint_8bit (*state)[4], uint_8bit (*out)[4], now_aes_key* AES_key){
if(AES_key==NULL||state==NULL||out==NULL){
return -1;
}
int i;
uint_32bit* key_pointer=AES_key->encryption_key+40;
AddRoundKey(state,key_pointer);
for(i=1;i<10;i++){
key_pointer-=4;
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(state,key_pointer);
InvMixColums(state);
}
key_pointer-=4;
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(state,key_pointer);
memcpy(out,state,16*sizeof(uint_8bit));
/*for(i=0;i<4;i++){
for(j=0;j<4;j++){
out[i][j]=state[i][j];
}
}*/
return 0;
}
long get_file_size(char* filename){
int fd=-1;
struct stat file_stat;
fd=open(filename,O_RDONLY);
if(fd==-1){
return -1;
}
if(fstat(fd,&file_stat)==-1){
close(fd);;
return -1;
}
close(fd);
return file_stat.st_size;
}
//should return a value between 1-16
//if 0xFF get, filesize is invalid.
uint_8bit get_padding_num(long filesize){
if(filesize<0){
return 0xFF;
}
return 16-filesize%16;
}
uint_8bit get_file_padding_num(char* filename){
long filesize=get_file_size(filename);
if(filesize<0){
return 0xFF;
}
return 16-filesize%16;
}
//Load a file to dynamically-allocated memory, and return the beginning position
//return NULL: FAILED
//CAUTION! Dynamic allocation is here! Do free them after using!!!
//buffer_size: byte
uint_8bit* malloc_read_encryption(char* input, unsigned long* buffer_size){
long filesize=get_file_size(input);
uint_8bit padding_num;
unsigned long buffer_size_temp;
if(filesize==-1){
*buffer_size=0;
return NULL;
}
padding_num=get_padding_num(filesize);
if(padding_num==0xFF){
*buffer_size=0;
return NULL;
}
if(padding_num==0x00){
buffer_size_temp=sizeof(uint_8bit)*(filesize+16); // Add another 4x4 block.
}
else{
buffer_size_temp=sizeof(uint_8bit)*(filesize+padding_num);
}
uint_8bit* buffer=(uint_8bit*)malloc(buffer_size_temp);
if(buffer==NULL){
*buffer_size=0;
return NULL;
}
*buffer_size=buffer_size_temp; //If allocated successfully, then export the size
memset(buffer,padding_num,buffer_size_temp); //Initialize the buffer with padding_num;
return buffer;
}
//return NULL: Didn't allocate
//return others: Allocated the buffer_size byte memory.
uint_8bit* malloc_write(unsigned long buffer_size){
if(buffer_size==0){
return NULL;
}
uint_8bit* buffer=(uint_8bit*)malloc(buffer_size);
return buffer;
}
//Load a file to dynamically-allocated memory, and return the beginning position
//return NULL: FAILED
//CAUTION! Dynamic allocation is here! Do free them after using!!!
//buffer_size: byte
uint_8bit* malloc_read_decryption(char* input, unsigned long* buffer_size){
long filesize=get_file_size(input);
unsigned long buffer_size_temp;
if(filesize<1||filesize%16!=0){
*buffer_size=0;
return NULL; //encrypted file size cannot be 0, and the filesize must be 16x
}
buffer_size_temp=sizeof(uint_8bit)*(unsigned long)filesize;
uint_8bit* buffer=(uint_8bit*)malloc(buffer_size_temp);
if(buffer==NULL){
*buffer_size=0;
return NULL;
}
*buffer_size=buffer_size_temp; //If allocated successfully, then export the size
memset(buffer,0x00,buffer_size_temp); //Initialize the buffer with padding_num;
return buffer;
}
uint_8bit char_to_hex(char x){
if(x=='0'||x=='9'){
return x-='0';
}
else if(x>'0'&&x<'9'){
return x-='0';
}
else if(x=='A'||x=='F'){
return x-'A'+10;
}
else if(x>'A'&&x<'F'){
return x-'A'+10;
}
else if(x=='a'||x=='f'){
return x-'a'+10;
}
else if(x>'a'&&x<'f'){
return x-'a'+10;
}
else{
return 255;
}
}
//convert an MD5(char [32]) to a 128-bit AES key.
int md5convert(char* md5string, uint_8bit* key, uint_8bit key_length){
int length=strlen(md5string);
int i;
uint_8bit a,b;
if(length!=32){ //If the md5string width is not 32, stop and exit.
return -1;
}
for(i=0;i<32;i++){
if(md5string[i]<'0'||md5string[i]>'f'){
return -1;
}
else if(md5string[i]>'9'&&md5string[i]<'A'){
return -1;
}
else if(md5string[i]>'F'&&md5string[i]<'a'){
return -1;
}
else{
continue;
}
}
if(key_length!=16){ //If the key length is incorrect, stop and exit.
return -3;
}
for(i=0;i<16;i++){
a=char_to_hex(md5string[i<<1])&0x0F; //Get the lower 4 bits
b=char_to_hex(md5string[(i<<1)^0x01])&0x0F; //Get the lower 4 bits
if(a==255||b==255){
return -1;
}
key[i]=(a<<4)^b;
}
return 0;
}
//bulk read a file and encrypt it.
//return -1: input file cannot be opened
//return -3: output file cannot be created
//return -5: failed to allocate mem for reading
//return -7: failed to allocate mem for writing
//return 1: failed to write completely to the file
//return 3: Not a valid key string
//return 5: key expansion failed.
//return 127: AES_CORE_ERROR
//return 0: normal exit
int now_aes_ecb_file_encryption(char* input, char* output, char* md5_string){
unsigned long buffer_size;
unsigned long i,block_num;
uint_8bit* pt_read;
uint_8bit* pt_write;
uint_8bit state[4][4]={0x00};
uint_8bit out[4][4]={0x00};
uint_8bit key[16]={0x00};
now_aes_key AES_key;
if(md5convert(md5_string,key,16)!=0){
return 3; //Not a valid MD5 String
}
if(key_expansion(key,16,&AES_key)!=0){
return 5;
}
FILE* file_p_in=fopen(input,"rb");
if(file_p_in==NULL){
return -1;
}
FILE* file_p_out=fopen(output,"wb+");
if(file_p_out==NULL){
fclose(file_p_in);
return -3;
}
uint_8bit* read_buffer=malloc_read_encryption(input,&buffer_size);
if(read_buffer==NULL){
fclose(file_p_in);
fclose(file_p_out);
return -5;
}
uint_8bit* write_buffer=malloc_write(buffer_size);
if(write_buffer==NULL){
free(read_buffer);
fclose(file_p_in);
fclose(file_p_out);
return -7;
}
if(fread(read_buffer,sizeof(uint_8bit),buffer_size,file_p_in)!=buffer_size){}
pt_read=read_buffer;
pt_write=write_buffer;
block_num=buffer_size>>4; //Get the block number;
i=0;
while(i<block_num){
assem_state(state,pt_read);
if(aes_ecb_encryption_core(state,out,&AES_key)!=0){
free(read_buffer);
free(write_buffer);
fclose(file_p_in);
fclose(file_p_out);
return 127; //If AES core error, collect garbages and report 127;
}
deassem_out(out,pt_write);
pt_read+=16; //Move to next block
pt_write+=16; //Move to next block
i++;
}
if(fwrite(write_buffer,sizeof(uint_8bit),buffer_size,file_p_out)!=buffer_size){
free(read_buffer);
free(write_buffer);
fclose(file_p_in);
fclose(file_p_out);
return 1;
}
free(read_buffer);
free(write_buffer);
fclose(file_p_in);
fclose(file_p_out);
return 0;
}
//bulk read a file and decrypt it.
//return -1: input file cannot be opened
//return -3: output file cannot be created
//return -5: failed to allocate mem for reading
//return -7: failed to allocate mem for writing
//return 1: failed to write completely to the file
//return 3: Not a valid key string
//return 5: key expansion failed.
//return 7: Not a valid encrypted file
//return 9: Invalid padding number
//return 127: AES_CORE_ERROR
//return 0: normal exit
int now_aes_ecb_file_decryption(char* input, char* output, char* md5_string){
unsigned long buffer_size;
unsigned long i,block_num;
uint_8bit* pt_read;
uint_8bit* pt_write;
uint_8bit state[4][4]={0x00};
uint_8bit out[4][4]={0x00};
uint_8bit padding_num;
uint_8bit key[16]={0x00};
now_aes_key AES_key;
if(md5convert(md5_string,key,16)!=0){
return 3; //Not a valid MD5 String
}
if(key_expansion(key,16,&AES_key)!=0){
return 5;
}
FILE* file_p_in=fopen(input,"rb");
if(file_p_in==NULL){
return -1;
}
FILE* file_p_out=fopen(output,"wb+");
if(file_p_out==NULL){
fclose(file_p_in);
return -3;
}
uint_8bit* read_buffer=malloc_read_decryption(input,&buffer_size);
if(read_buffer==NULL){
fclose(file_p_in);
fclose(file_p_out);
return -5;
}
uint_8bit* write_buffer=malloc_write(buffer_size);
if(write_buffer==NULL){
free(read_buffer);
fclose(file_p_in);
fclose(file_p_out);
return -7;
}
if(fread(read_buffer,sizeof(uint_8bit),buffer_size,file_p_in)!=buffer_size){
free(read_buffer);
free(write_buffer);
fclose(file_p_in);
fclose(file_p_out);
return 7; //Not a valid encrypted file.
}
pt_read=read_buffer;
pt_write=write_buffer;
block_num=buffer_size>>4; //Get the block number;
i=0;
while(i<block_num){
assem_state(state,pt_read);
if(aes_ecb_decryption_core(state,out,&AES_key)!=0){
free(read_buffer);
free(write_buffer);
fclose(file_p_in);
fclose(file_p_out);
return 127; //If AES core error, collect garbages and report 127;
}
deassem_out(out,pt_write);
pt_read+=16; //Move to next block
pt_write+=16; //Move to next block
i++;
}
padding_num=out[3][3];
if(fwrite(write_buffer,sizeof(uint_8bit),buffer_size-padding_num,file_p_out)!=buffer_size-padding_num){
free(read_buffer);
free(write_buffer);
fclose(file_p_in);
fclose(file_p_out);
return 1;
}
free(read_buffer);
free(write_buffer);
fclose(file_p_in);
fclose(file_p_out);
return 0;
}
/*
* return 1: Not enough parameters:
* +-> Format: now-crypto.exe OPTION ORIGINAL_FILE_PATH TARGET_FILE_PATH MD5_STRING
* return 3: Option is invalid
* return 5: FILE I/O: read error
* return 7: FILE I/O: write error
* return 9: Memory Alloc Error
* return 11: File write incomplete
* return 13: Not a valid key.
* return 15: Failed to expand key
* return 17: Not an AES encrypted file
* return 127: AES error, probably a bug
* return 0: Normal exit.
*/
int main(int argc,char *argv[]){
clock_t start,stop;
start=clock();
printf("[ -INFO- ] AES-128 ECB crypto module for HPC-NOW. Version: %s\n",CRYPTO_VERSION);
printf("| Shanghai HPC-NOW Technologies Co., Ltd. License: MIT\n");
int run_flag=0;
if(argc!=5){
printf("[ FATAL: ] Command format is not correct. STRICT format:\n");
printf("| +-> ./aes-ecb.exe OPTION INPUT_FILE OUTPUT_FILE MD5_STRING\n");
return 1;
}
if(strcmp(argv[1],"encrypt")!=0&&strcmp(argv[1],"decrypt")!=0){
printf("[ FATAL: ] Option is invalid.\n");
return 3;
}
else if(strcmp(argv[1],"encrypt")==0){
run_flag=now_aes_ecb_file_encryption(argv[2],argv[3],argv[4]);
}
else{
run_flag=now_aes_ecb_file_decryption(argv[2],argv[3],argv[4]);
}
if(run_flag==-1){
printf("[ FATAL: ] File read error.\n");
return 5;
}
else if(run_flag==-3){
printf("[ FATAL: ] File write error.\n");
return 7;
}
else if(run_flag==-5||run_flag==-7){
printf("[ FATAL: ] Memory allocation failed.\n");
return 9;
}
else if(run_flag==1){
printf("[ FATAL: ] Failed to write the output file completely.\n");
return 11;
}
else if(run_flag==3){
printf("[ FATAL: ] Not a valid crypto-key.\n");
return 13;
}
else if(run_flag==5){
printf("[ FATAL: ] AES: Failed to expand the key.\n");
return 15;
}
else if(run_flag==7||run_flag==9){
printf("[ FATAL: ] Probably you are not decrypting an AES encrypted file.\n");
return 17;
}
else if(run_flag==127){
printf("[ FATAL: ] AES error. Please report this bug.\n");
return 127;
}
else{
stop=clock();
printf("[ -INFO- ] %s %s to %s %lfsec(s).\n",argv[1],argv[2],argv[3],(double)(stop-start)*1.0/CLOCKS_PER_SEC);
return 0;
}
}