-
Notifications
You must be signed in to change notification settings - Fork 304
/
Copy pathmain.py
303 lines (256 loc) · 11.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import argparse
import os
import time
import datetime
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from loguru import logger
from utils import tensor2float, save_scalars, DictAverageMeter, SaveScene, make_nograd_func
from datasets import transforms, find_dataset_def
from models import NeuralRecon
from config import cfg, update_config
from datasets.sampler import DistributedSampler
from ops.comm import *
def args():
parser = argparse.ArgumentParser(description='A PyTorch Implementation of NeuralRecon')
# general
parser.add_argument('--cfg',
help='experiment configure file name',
required=True,
type=str)
parser.add_argument('opts',
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER)
# distributed training
parser.add_argument('--gpu',
help='gpu id for multiprocessing training',
type=str)
parser.add_argument('--world-size',
default=1,
type=int,
help='number of nodes for distributed training')
parser.add_argument('--dist-url',
default='tcp://127.0.0.1:23456',
type=str,
help='url used to set up distributed training')
parser.add_argument('--local_rank',
default=0,
type=int,
help='node rank for distributed training')
# parse arguments and check
args = parser.parse_args()
return args
args = args()
update_config(cfg, args)
cfg.defrost()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
print('number of gpus: {}'.format(num_gpus))
cfg.DISTRIBUTED = num_gpus > 1
if cfg.DISTRIBUTED:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.LOCAL_RANK = args.local_rank
cfg.freeze()
torch.manual_seed(cfg.SEED)
torch.cuda.manual_seed(cfg.SEED)
# create logger
if is_main_process():
if not os.path.isdir(cfg.LOGDIR):
os.makedirs(cfg.LOGDIR)
current_time_str = str(datetime.datetime.now().strftime('%Y%m%d_%H%M%S'))
logfile_path = os.path.join(cfg.LOGDIR, f'{current_time_str}_{cfg.MODE}.log')
print('creating log file', logfile_path)
logger.add(logfile_path, format="{time} {level} {message}", level="INFO")
tb_writer = SummaryWriter(cfg.LOGDIR)
# Augmentation
if cfg.MODE == 'train':
n_views = cfg.TRAIN.N_VIEWS
random_rotation = cfg.TRAIN.RANDOM_ROTATION_3D
random_translation = cfg.TRAIN.RANDOM_TRANSLATION_3D
paddingXY = cfg.TRAIN.PAD_XY_3D
paddingZ = cfg.TRAIN.PAD_Z_3D
else:
n_views = cfg.TEST.N_VIEWS
random_rotation = False
random_translation = False
paddingXY = 0
paddingZ = 0
transform = []
transform += [transforms.ResizeImage((640, 480)),
transforms.ToTensor(),
transforms.RandomTransformSpace(
cfg.MODEL.N_VOX, cfg.MODEL.VOXEL_SIZE, random_rotation, random_translation,
paddingXY, paddingZ, max_epoch=cfg.TRAIN.EPOCHS),
transforms.IntrinsicsPoseToProjection(n_views, 4),
]
transforms = transforms.Compose(transform)
# dataset, dataloader
MVSDataset = find_dataset_def(cfg.DATASET)
train_dataset = MVSDataset(cfg.TRAIN.PATH, "train", transforms, cfg.TRAIN.N_VIEWS, len(cfg.MODEL.THRESHOLDS) - 1)
test_dataset = MVSDataset(cfg.TEST.PATH, "test", transforms, cfg.TEST.N_VIEWS, len(cfg.MODEL.THRESHOLDS) - 1)
if cfg.DISTRIBUTED:
train_sampler = DistributedSampler(train_dataset, shuffle=False)
TrainImgLoader = torch.utils.data.DataLoader(
train_dataset,
batch_size=cfg.BATCH_SIZE,
sampler=train_sampler,
num_workers=cfg.TRAIN.N_WORKERS,
pin_memory=True,
drop_last=True
)
test_sampler = DistributedSampler(test_dataset, shuffle=False)
TestImgLoader = torch.utils.data.DataLoader(
test_dataset,
batch_size=cfg.BATCH_SIZE,
sampler=test_sampler,
num_workers=cfg.TEST.N_WORKERS,
pin_memory=True,
drop_last=False
)
else:
TrainImgLoader = DataLoader(train_dataset, cfg.BATCH_SIZE, shuffle=False, num_workers=cfg.TRAIN.N_WORKERS,
drop_last=True)
TestImgLoader = DataLoader(test_dataset, cfg.BATCH_SIZE, shuffle=False, num_workers=cfg.TEST.N_WORKERS,
drop_last=False)
# model, optimizer
model = NeuralRecon(cfg)
if cfg.DISTRIBUTED:
model.cuda()
model = DistributedDataParallel(
model, device_ids=[cfg.LOCAL_RANK], output_device=cfg.LOCAL_RANK,
# this should be removed if we update BatchNorm stats
broadcast_buffers=False,
find_unused_parameters=True
)
else:
model = torch.nn.DataParallel(model, device_ids=[0])
model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=cfg.TRAIN.LR, betas=(0.9, 0.999), weight_decay=cfg.TRAIN.WD)
# main function
def train():
# load parameters
start_epoch = 0
if cfg.RESUME:
saved_models = [fn for fn in os.listdir(cfg.LOGDIR) if fn.endswith(".ckpt")]
saved_models = sorted(saved_models, key=lambda x: int(x.split('_')[-1].split('.')[0]))
if len(saved_models) != 0:
# use the latest checkpoint file
loadckpt = os.path.join(cfg.LOGDIR, saved_models[-1])
logger.info("resuming " + str(loadckpt))
map_location = {'cuda:%d' % 0: 'cuda:%d' % cfg.LOCAL_RANK}
state_dict = torch.load(loadckpt, map_location=map_location)
model.load_state_dict(state_dict['model'], strict=False)
optimizer.param_groups[0]['initial_lr'] = state_dict['optimizer']['param_groups'][0]['lr']
optimizer.param_groups[0]['lr'] = state_dict['optimizer']['param_groups'][0]['lr']
start_epoch = state_dict['epoch'] + 1
elif cfg.LOADCKPT != '':
# load checkpoint file specified by args.loadckpt
logger.info("loading model {}".format(cfg.LOADCKPT))
map_location = {'cuda:%d' % 0: 'cuda:%d' % cfg.LOCAL_RANK}
state_dict = torch.load(cfg.LOADCKPT, map_location=map_location)
model.load_state_dict(state_dict['model'])
optimizer.param_groups[0]['initial_lr'] = state_dict['optimizer']['param_groups'][0]['lr']
optimizer.param_groups[0]['lr'] = state_dict['optimizer']['param_groups'][0]['lr']
start_epoch = state_dict['epoch'] + 1
logger.info("start at epoch {}".format(start_epoch))
logger.info('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
milestones = [int(epoch_idx) for epoch_idx in cfg.TRAIN.LREPOCHS.split(':')[0].split(',')]
lr_gamma = 1 / float(cfg.TRAIN.LREPOCHS.split(':')[1])
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=lr_gamma,
last_epoch=start_epoch - 1)
for epoch_idx in range(start_epoch, cfg.TRAIN.EPOCHS):
logger.info('Epoch {}:'.format(epoch_idx))
lr_scheduler.step()
TrainImgLoader.dataset.epoch = epoch_idx
TrainImgLoader.dataset.tsdf_cashe = {}
# training
for batch_idx, sample in enumerate(TrainImgLoader):
global_step = len(TrainImgLoader) * epoch_idx + batch_idx
do_summary = global_step % cfg.SUMMARY_FREQ == 0
start_time = time.time()
loss, scalar_outputs = train_sample(sample)
if is_main_process():
logger.info(
'Epoch {}/{}, Iter {}/{}, train loss = {:.3f}, time = {:.3f}'.format(epoch_idx, cfg.TRAIN.EPOCHS,
batch_idx,
len(TrainImgLoader), loss,
time.time() - start_time))
if do_summary and is_main_process():
save_scalars(tb_writer, 'train', scalar_outputs, global_step)
del scalar_outputs
# checkpoint
if (epoch_idx + 1) % cfg.SAVE_FREQ == 0 and is_main_process():
torch.save({
'epoch': epoch_idx,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()},
"{}/model_{:0>6}.ckpt".format(cfg.LOGDIR, epoch_idx))
def test(from_latest=False):
ckpt_list = []
while True:
saved_models = [fn for fn in os.listdir(cfg.LOGDIR) if fn.endswith(".ckpt")]
saved_models = sorted(saved_models, key=lambda x: int(x.split('_')[-1].split('.')[0]))
if from_latest:
saved_models = saved_models[-1:]
for ckpt in saved_models:
if ckpt not in ckpt_list:
# use the latest checkpoint file
loadckpt = os.path.join(cfg.LOGDIR, ckpt)
logger.info("resuming " + str(loadckpt))
state_dict = torch.load(loadckpt)
model.load_state_dict(state_dict['model'])
epoch_idx = state_dict['epoch']
TestImgLoader.dataset.tsdf_cashe = {}
avg_test_scalars = DictAverageMeter()
save_mesh_scene = SaveScene(cfg)
batch_len = len(TestImgLoader)
for batch_idx, sample in enumerate(TestImgLoader):
for n in sample['fragment']:
logger.info(n)
# save mesh if SAVE_SCENE_MESH and is the last fragment
save_scene = cfg.SAVE_SCENE_MESH and batch_idx == batch_len - 1
start_time = time.time()
loss, scalar_outputs, outputs = test_sample(sample, save_scene)
logger.info('Epoch {}, Iter {}/{}, test loss = {:.3f}, time = {:3f}'.format(epoch_idx, batch_idx,
len(TestImgLoader),
loss,
time.time() - start_time))
avg_test_scalars.update(scalar_outputs)
del scalar_outputs
if batch_idx % 100 == 0:
logger.info("Iter {}/{}, test results = {}".format(batch_idx, len(TestImgLoader),
avg_test_scalars.mean()))
# save mesh
if cfg.SAVE_SCENE_MESH:
save_mesh_scene(outputs, sample, epoch_idx)
save_scalars(tb_writer, 'fulltest', avg_test_scalars.mean(), epoch_idx)
logger.info("epoch {} avg_test_scalars:".format(epoch_idx), avg_test_scalars.mean())
ckpt_list.append(ckpt)
time.sleep(10)
def train_sample(sample):
model.train()
optimizer.zero_grad()
outputs, loss_dict = model(sample)
loss = loss_dict['total_loss']
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
return tensor2float(loss), tensor2float(loss_dict)
@make_nograd_func
def test_sample(sample, save_scene=False):
model.eval()
outputs, loss_dict = model(sample, save_scene)
loss = loss_dict['total_loss']
return tensor2float(loss), tensor2float(loss_dict), outputs
if __name__ == '__main__':
if cfg.MODE == "train":
train()
elif cfg.MODE == "test":
test()