Skip to content

Ashu11-A/Manga-Convert

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[ML] Manga (Dark Mode)

license-info stars-infoa

Last-Comitt Comitts Year reposize-info

📃 | Descrição

Este é um projeto simples desenvolvido em Python (training) e TypeScript (proxy/tests), baseado no my-bandwidth-hero, destinado a remover o fundo de mangás. Eu criei isso porque costumo ler mangás principalmente à noite.

Para utilizar este projeto em produção, é necessário instalar a extensão do navegador Bandwidth Hero. Se você preferir ler mangás em um leitor específico, recomendo o TachiyomiAZ, que é compatível com o Bandwidth Hero.

Este projeto foi estruturado e testado com U-Net e Yolov8, utilizando Tensorflow para produção (Tensorflow é compatével com Javascript).

Input Unet Output YoloV8 Output
Input Unet-output Yolo-output

Tune

Model Time Tuning Image Size Epochs/Inter Iterations Fitness Scatter Plots
YoloV8 45.1h 1280x1280 100 100 yolo-tune_fitness yolo-tune_scatter_plots

Comparison (Unet vs YoloV8)

Property Unet Yolo
Val Accuracy 0.7444 Precision: 0.96808, Recall: 0.9731
Pretrained Model false true
EarlyStopping 26 311
Image Set 3.882 283
Image Channels 4 3
Training Size 512 x 768 1280 x 1280
Dropout 0.2 0.0
Kernel Size 3 3
Filter [32, 64, 128, 256, 512] [64, 128, 256, 512, 768]
Artifacts high low

📝 | Cite This Project

If you use this dataset in a research paper, please cite it using the following BibTeX:

@misc{
  manga_convert_dataset,
  title = { Manga_Convert Dataset },
  type = { Open Source Dataset },
  author = { Ashu },
  howpublished = { \url{ https://universe.roboflow.com/ashu-biqfs/manga_convert } },
  url = { https://universe.roboflow.com/ashu-biqfs/manga_convert },
  journal = { Roboflow Universe },
  publisher = { Roboflow },
  year = { 2024 },
  month = { jun },
}

⚙️ | Requirements

Program Vesion
Nodejs v21.7.3
Python v3.10.12

💹 | Production (only proxy)

# Install requirements
cd src
python3.10 -m venv ./python
source python/bin/activate

pip install -r requirements.txt

source python/bin/activate

# Start
python app.py

🐛 | Develop (training)

Install requirements

# Windowns WSL2: https://www.tensorflow.org/install/pip?hl=pt-br#windows-wsl2_1
# Install cuda: https://developer.nvidia.com/cuda-downloads

sudo apt install nvidia-cuda-toolkit
sudo apt install -y python3.10-venv libjpeg-dev zlib1g-dev

Training

cd training
python3.10 -m venv ./python
source python/bin/activate

pip install -r requirements.txt
pip install --upgrade pip setuptools wheel
pip install pillow --no-binary :all:

source python/bin/activate

Yolo

# Train normally
python training/start.py --yolo --size 1280

# Look for the best result.
python training/start.py --yolo --size 1280 --best

# Train on another model
python training/start.py --yolo --size 1280 --model 10

# Convert model in TensorFlow
python training/start.py --yolo --size 1280 --model 10 --convert # or only --convert without --model for latest model

# Test Model
python training/start.py --yolo --model 10 --test # or only --test without --model for latest model

Unet

# Look for the best result.
python training/start.py --unet --best

# Run a ready-made script.
python training/start.py --unet

# Convert model in TensorFlow
python training/start.py --unet --model 3 --convert
Saving current Libs
pip freeze > requirements.txt 

⚠️ Soluções de Erros

Error code: ImportError: cannot import name 'shape_poly' from 'jax.experimental.jax2tf'

Causa: Esse erro é do próprio código.
Solução:

jax-ml/jax#18978 (comment)

# Path: lib/python3.10/site-packages/tensorflowjs/converters/jax_conversion.py

# Remove:
from jax.experimental.jax2tf import shape_poly
PolyShape = shape_poly.PolyShape

# Add:
from jax.experimental.jax2tf import PolyShape

Error code: Wsl/Service/CreateInstance/MountVhd/HCS/ERROR_FILE_NOT_FOUND

Causa: Possivelmente você desistalou e reinstalou o wsl/distro.
Solução:
# List the distributions installed, by running following in PowerShell.
wsl -l

# Unregister the distribution. Replace the "Ubuntu" below with your distribution name found in Step #1:
wsl --unregister Ubuntu-22.04

# Launch the Ubuntu (or other distribution) which was installed using Microsoft Store

Yolo arg --best

Error:
QObject::moveToThread: Current thread (0x5a75e26f1250) is not the object's thread (0x5a75e21c6fa0).
Cannot move to target thread (0x5a75e26f1250)

qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "/home/ashu/Documents/GitHub/Manga-Convert/lib/python3.10/site-packages/cv2/qt/plugins" even though it was found.
This application failed to start because no Qt platform plugin could be initialized. Reinstalling the application may fix this problem.

Available platform plugins are: xcb, eglfs, linuxfb, minimal, minimalegl, offscreen, vnc, wayland-egl, wayland, wayland-xcomposite-egl, wayland-xcomposite-glx, webgl.

Sulução:

NVlabs/instant-ngp#300 (comment)

pip uninstall opencv-python
pip install opencv-python-headless
@software{yolov8_ultralytics,
  author = {Glenn Jocher and Ayush Chaurasia and Jing Qiu},
  title = {Ultralytics YOLOv8},
  version = {8.0.0},
  year = {2023},
  url = {https://github.com/ultralytics/ultralytics},
  orcid = {0000-0001-5950-6979, 0000-0002-7603-6750, 0000-0003-3783-7069},
  license = {AGPL-3.0}
}
Ronneberger, Olaf, Philipp Fischer, and Thomas Brox.
"U-net: Convolutional networks for biomedical image segmentation."
In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234-241. Springer, Cham, 2015.