forked from huggingface/peft
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Megatron distributed parallel linear LoRA (huggingface#1092)
Adds option to use Megatron's ColumnParallelLinear and RowParallelLinear for LoRA linear layers, leading to improved performance when using LoRA with Megatron.
- Loading branch information
1 parent
05819db
commit 1e71585
Showing
5 changed files
with
381 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,158 @@ | ||
from typing import Any | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.init as init | ||
|
||
from .layer import LoraLayer | ||
|
||
|
||
class LoraParallelLinear(nn.Module, LoraLayer): | ||
""" | ||
When the target layer parallel_linear is RowParallelLinear, in order to keep the input and output shapes | ||
consistent, we need to split the lora matrix A into rows, and the lora_B at this time should be a complete linear | ||
layer; In the same way, when the target layer is ColumnParallelLinear, we perform column segmentation on lora_B, | ||
while lora_A is still a complete linear layer. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
base_layer, | ||
adapter_name: str, | ||
backend, | ||
r: int = 0, | ||
lora_alpha: int = 1, | ||
lora_dropout: float = 0.0, | ||
fan_in_fan_out: bool = False, | ||
init_lora_weights: bool = True, | ||
**kwargs, | ||
): | ||
super().__init__() | ||
LoraLayer.__init__(self, base_layer=base_layer) | ||
|
||
self.backend = backend | ||
self.is_paralle_a = isinstance(base_layer, backend.RowParallelLinear) | ||
self.fan_in_fan_out = fan_in_fan_out | ||
self._active_adapter = adapter_name | ||
|
||
megatron_config = kwargs["megatron_config"] | ||
parallel_linear_kwargs = {"megatron_config": megatron_config} | ||
init_method = init.xavier_normal_ | ||
if hasattr(megatron_config, "init_method"): | ||
init_method = megatron_config.init_method | ||
input_is_parallel = True | ||
gather_output = False | ||
if isinstance(base_layer, self.backend.RowParallelLinear): | ||
input_is_parallel = base_layer.input_is_parallel | ||
else: | ||
gather_output = base_layer.gather_output | ||
self.update_layer( | ||
adapter_name, | ||
r, | ||
lora_alpha, | ||
lora_dropout, | ||
init_lora_weights, | ||
init_method, | ||
input_is_parallel, | ||
gather_output, | ||
**parallel_linear_kwargs, | ||
) | ||
|
||
self.is_target_conv_1d_layer = False | ||
|
||
def update_layer( | ||
self, | ||
adapter_name, | ||
r, | ||
lora_alpha, | ||
lora_dropout, | ||
init_lora_weights, | ||
init_method=init.xavier_normal_, | ||
input_is_parallel=True, | ||
gather_output=False, | ||
**parallel_linear_kwargs, | ||
): | ||
if r <= 0: | ||
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") | ||
self.r[adapter_name] = r | ||
self.lora_alpha[adapter_name] = lora_alpha | ||
if lora_dropout > 0.0: | ||
lora_dropout_layer = nn.Dropout(p=lora_dropout) | ||
else: | ||
lora_dropout_layer = nn.Identity() | ||
|
||
self.lora_dropout[adapter_name] = lora_dropout_layer | ||
|
||
megatron_config = parallel_linear_kwargs["megatron_config"] | ||
# lora needs to be forced to upgrade to 32-bit precision, otherwise it will overflow | ||
megatron_config.params_dtype = torch.float32 | ||
if self.is_paralle_a: | ||
lora_a = self.backend.RowParallelLinear( | ||
input_size=self.in_features, | ||
output_size=r, | ||
bias=False, | ||
input_is_parallel=input_is_parallel, | ||
skip_bias_add=True, | ||
init_method=init_method, | ||
config=megatron_config, | ||
) | ||
lora_b = nn.Linear(in_features=r, out_features=self.out_features, bias=False, dtype=torch.float32) | ||
else: | ||
lora_a = nn.Linear(in_features=self.in_features, out_features=r, bias=False, dtype=torch.float32) | ||
lora_b = self.backend.ColumnParallelLinear( | ||
input_size=r, | ||
output_size=self.out_features, | ||
bias=False, | ||
gather_output=gather_output, | ||
init_method=init_method, | ||
config=megatron_config, | ||
) | ||
self.lora_A[adapter_name] = lora_a | ||
self.lora_B[adapter_name] = lora_b | ||
self.scaling[adapter_name] = lora_alpha / r | ||
if init_lora_weights: | ||
self.reset_lora_parameters(adapter_name) | ||
|
||
weight = getattr(self.get_base_layer(), "weight", None) | ||
if weight is not None: | ||
# the layer is already completely initialized, this is an update | ||
if weight.dtype.is_floating_point or weight.dtype.is_complex: | ||
self.to(weight.device, dtype=weight.dtype) | ||
else: | ||
self.to(weight.device) | ||
self.set_adapter(self.active_adapters) | ||
|
||
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any): | ||
previous_dtype = x.dtype | ||
# If weight is used for matrix multiplication here, the final aggregation operation of the original | ||
# parallel_linear layer will be missing, so we need to directly call its forward function to obtain the | ||
# output of the original parallel_linear layer. | ||
if self.disable_adapters: | ||
if self.merged: | ||
self.unmerge() | ||
result, bias = self.base_layer(x, *args, **kwargs) | ||
elif self.merged: | ||
result, bias = self.base_layer(x, *args, **kwargs) | ||
else: | ||
result, bias = self.base_layer(x, *args, **kwargs) | ||
for active_adapter in self.active_adapters: | ||
if active_adapter not in self.lora_A.keys(): | ||
continue | ||
lora_A = self.lora_A[active_adapter] | ||
lora_B = self.lora_B[active_adapter] | ||
dropout = self.lora_dropout[active_adapter] | ||
scaling = self.scaling[active_adapter] | ||
x = x.to(lora_A.weight.dtype) | ||
|
||
lora_result = lora_A(dropout(x)) | ||
if isinstance(lora_result, tuple): | ||
lora_result = lora_result[0] | ||
lora_result = lora_B(lora_result) | ||
if isinstance(lora_result, tuple): | ||
lora_result = lora_result[0] | ||
lora_result = lora_result * scaling | ||
|
||
result = result + lora_result | ||
|
||
result = result.to(previous_dtype) | ||
return result, bias |
Oops, something went wrong.