Copyright (C) Wrocław University of Science and Technology (PWr), 2010-2018. All rights reserved.
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.
- Michał Marcińczuk (2010–present),
- Jan Kocoń (2014–2019),
- Michał Gawor (2019),
- Adam Kaczmarek (2014–2015),
- Michał Krautforst (2013-2015),
- Dominik Piasecki (2013),
- Maciej Janicki (2011)
Marcińczuk, Michał; Kocoń, Jan; Oleksy, Marcin. Liner2 — a Generic Framework for Named Entity Recognition In: Proceedings of the 6th Workshop on Balto-Slavic Natural Language Processing, pages 86–91, Valencia, Spain, 4 April 2017. Association for Computational Linguistics
[PDF]
[Bibtex]
@InProceedings{W17-1413,
author = "Marci{\'{n}}czuk, Micha{\l}
and Koco{\'{n}}, Jan
and Oleksy, Marcin",
title = "Liner2 --- a Generic Framework for Named Entity Recognition",
booktitle = "Proceedings of the 6th Workshop on Balto-Slavic Natural Language Processing",
year = "2017",
publisher = "Association for Computational Linguistics",
pages = "86--91",
location = "Valencia, Spain",
doi = "10.18653/v1/W17-1413",
url = "http://aclweb.org/anthology/W17-1413"
}
Marcińczuk, Michał; Kocoń, Jan; Gawor, Michał. Recognition of Named Entities for Polish-Comparison of Deep Learning and Conditional Random Fields Approaches Ogrodniczuk, Maciej; Kobyliński, Łukasz (Eds.): Proceedings of the PolEval 2018 Workshop, pp. 63-73, Institute of Computer Science, Polish Academy of Science, Warszawa, 2018.
[PDF]
[Bibtex]
@inproceedings{poldeepner2018,
title = "Recognition of Named Entities for Polish-Comparison of Deep Learning and Conditional Random Fields Approaches",
author = "Marcińczuk, Michał and Kocoń, Jan and Gawor, Michał",
year = "2018",
editor = "Ogrodniczuk, Maciej and Kobyliński, Łukasz",
booktitle = "Proceedings of the PolEval 2018 Workshop",
location = "Warsaw, Poland",
pages = "77--92",
publisher = "Institute of Computer Science, Polish Academy of Science"
}
- Docker
- Docker Compose
- Python3 (for demo script)
Build the Docker:
docker-compose build
Run the service:
docker-compose up
Test the service:
python3 stuff/python/liner2rmq.py -t "Pani Ala Nowak mieszkw w Zielonej Górze"
Expected output:
[INFO] Temp route: route-ET7DWN
[INFO] Temp input file: /tmp/ez6s96sn
[INFO] Sent msg 'route-ET7DWN /tmp/ez6s96sn' to liner2-input
[INFO] Temp output file: b'/tmp/ez6s96sn-ner.xml'
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE chunkList SYSTEM "ccl.dtd">
<chunkList>
<chunk id="ch1">
<sentence id="s1">
<tok>
<orth>Pani</orth>
<lex disamb="1"><base>pani</base><ctag>subst:sg:nom:f</ctag></lex>
<ann chan="persname">0</ann>
<ann chan="persname_forename">0</ann>
<ann chan="persname_surname">0</ann>
<ann chan="placename_settlement">0</ann>
</tok>
<tok>
<orth>Ala</orth>
<lex disamb="1"><base>Ala</base><ctag>subst:sg:nom:f</ctag></lex>
<ann chan="persname" head="1">1</ann>
<ann chan="persname_forename" head="1">1</ann>
<ann chan="persname_surname">0</ann>
<ann chan="placename_settlement">0</ann>
<prop key="persName:lemma">Ala Nowak</prop>
<prop key="persname_forename:lemma">Ala</prop>
</tok>
<tok>
<orth>Nowak</orth>
<lex disamb="1"><base>Nowak</base><ctag>subst:sg:nom:m1</ctag></lex>
<lex disamb="1"><base>nowak</base><ctag>subst:sg:nom:m1</ctag></lex>
<ann chan="persname">1</ann>
<ann chan="persname_forename">0</ann>
<ann chan="persname_surname" head="1">1</ann>
<ann chan="placename_settlement">0</ann>
<prop key="persname_surname:lemma">Nowak</prop>
</tok>
<tok>
<orth>mieszkw</orth>
<lex disamb="1"><base>mieszkw</base><ctag>subst:sg:nom:m1</ctag></lex>
<ann chan="persname">0</ann>
<ann chan="persname_forename">0</ann>
<ann chan="persname_surname">0</ann>
<ann chan="placename_settlement">0</ann>
</tok>
<tok>
<orth>w</orth>
<lex disamb="1"><base>w</base><ctag>prep:loc:nwok</ctag></lex>
<ann chan="persname">0</ann>
<ann chan="persname_forename">0</ann>
<ann chan="persname_surname">0</ann>
<ann chan="placename_settlement">0</ann>
</tok>
<tok>
<orth>Zielonej</orth>
<lex disamb="1"><base>zielony</base><ctag>adj:sg:loc:f:pos</ctag></lex>
<ann chan="persname">0</ann>
<ann chan="persname_forename">0</ann>
<ann chan="persname_surname">0</ann>
<ann chan="placename_settlement" head="1">1</ann>
<prop key="placename_settlement:lemma">Zielonej G</prop>
</tok>
<tok>
<orth>G</orth>
<lex disamb="1"><base>G</base><ctag>brev:pun</ctag></lex>
<lex disamb="1"><base>godzina</base><ctag>brev:pun</ctag></lex>
<ann chan="persname">0</ann>
<ann chan="persname_forename">0</ann>
<ann chan="persname_surname">0</ann>
<ann chan="placename_settlement">1</ann>
</tok>
<ns/>
<tok>
<orth>?</orth>
<lex disamb="1"><base>?</base><ctag>interp</ctag></lex>
<ann chan="persname">0</ann>
<ann chan="persname_forename">0</ann>
<ann chan="persname_surname">0</ann>
<ann chan="placename_settlement">0</ann>
</tok>
<ns/>
<tok>
<orth>?</orth>
<lex disamb="1"><base>?</base><ctag>interp</ctag></lex>
<ann chan="persname">0</ann>
<ann chan="persname_forename">0</ann>
<ann chan="persname_surname">0</ann>
<ann chan="placename_settlement">0</ann>
</tok>
<ns/>
<tok>
<orth>rze</orth>
<lex disamb="1"><base>rze</base><ctag>subst:sg:nom:n</ctag></lex>
<ann chan="persname">0</ann>
<ann chan="persname_forename">0</ann>
<ann chan="persname_surname">0</ann>
<ann chan="placename_settlement">0</ann>
</tok>
</sentence>
</chunk>
</chunkList>
- Java 8
- C++ compiler (gcc 3.0 or higher) for CRF++
- set JAVA_HOME variable:
export JAVA_HOME=/usr/lib/jvm/default-java
- install dh-autoreconf:
sudo apt-get install dh-autoreconf
- Java 8
- CRF++ 0.57
Optional libraries:
- Polem (https://github.com/CLARIN-PL/Polem) — required by models using Polem to lemmatize phrases.
config-nkjp-poleval2018-polem.ini
fromliner26_model_ner_nkjp
- RabbitMQ (https://www.rabbitmq.com) — required to run Liner2 in service mode.
- WCRFT2 — morphological tagger required for
plain:wcrft
input format.
If you do not have CRF++ installed then do the following steps:
cd g419-external-dependencies
tar -xvf CRF++-0.57.tar.gz
cd CRF++-0.57
./configure
make
sudo make install
sudo ldconfig
Then:
./gradlew jar
./liner2-cli
Output:
*-----------------------------------------------------------------------------------------------*
* A framework for multitask sequence labeling, including: named entities, temporal expressions. *
* *
* Authors: Michał Marcińczuk (2010–2016), Jan Kocoń (2014–2016), Adam Kaczmarek (2014–2015) *
* Past: Michał Krautforst (2013-2015), Dominik Piasecki (2013), Maciej Janicki (2011) *
* Contact: michal.marcinczuk@pwr.wroc.pl *
* *
* G4.19 Research Group, Wrocław University of Technology *
*-----------------------------------------------------------------------------------------------*
Use one of the following tools:
- agreement -- checks agreement (of annotations) between suplied documents
- agreement2 -- compare sets of annotations for each pair of corpora. One set is
treated as a reference set and the other as a set to evaluate. It is a
refactored version of the agreement action.
- annotations -- generates an arff file with a list of annotations and their features
- constituents-eval -- evaluates normalizer against a specific set of documents (-i
batch:FORMAT, -i FORMAT)
- convert -- converts documents from one format to another and applies defined
converters
- curve -- brak opisu
- eval -- evaluates chunkers against a specific set of documents (-i
batch:FORMAT, -i FORMAT) #or perform cross validation (-i cv:{format})
- eval-unique -- evaluates chunkers against a specific set of documents (-i
batch:FORMAT, -i FORMAT) #or perform cross validation (-i
cv:{format}). The evaluation is performed on the sets#with unique
annotations, i.e. annotations with the same orth/base are treated as a
single annotation
- inplace -- process documents in place
- interactive -- processes text entered directly into the terminal
- lemmatize -- ToDo
- normalizer-eval3 -- processes data with given model
- normalizer-validate -- Read all annotation and their metadata and look for errors.
- pipe -- processes data with given model
- search -- earches for a phrases matching given pattern based on a set of token
features
- selection -- todo
- stats -- prints corpus statistics
- train -- trains chunkers
usage: ./liner2-cli [action] [options]
The package contains three models for recognition named entities according to KPWr NE guidelines.
- nam — named entity boundaries,
- top9 — coarse-grained categories,
- n82 — fine-grained categories.
Resources:
- DSpace page: https://clarin-pl.eu/dspace/handle/11321/263
- Direct link to the package: https://clarin-pl.eu/dspace/bitstream/handle/11321/263/liner25_model_ner_rev1.7z
Download the package:
cd Liner2
wget -O liner25_model_ner_rev1.7z https://clarin-pl.eu/dspace/bitstream/handle/11321/263/liner25_model_ner_rev1.7z
Unpack the package:
7z x liner25_model_ner_rev1.7z
Process a sample CCL file:
./liner2-cli pipe -i ccl -o tuples -f stuff/resources/sample-sentence.xml -m liner25_model_ner_rev1/config-top9.ini
Expected output:
(4,11,nam_liv,"Ala Nowak")
(20,28,nam_loc,"Warszawie")
Mirror: https://www.dropbox.com/s/wem3fp685zleuq6/liner26_model_ner_nkjp.zip?dl=0
DSpace page: https://clarin-pl.eu/dspace/handle/11321/598 (temporarily off-line)
Direct link to the package: https://clarin-pl.eu/dspace/bitstream/handle/11321/598/liner26_model_ner_nkjp.zip (temporarily off-line)
Liner2 participated in PolEval 2018 Task 2 on named entity recognition. It got a third place with the following scores:
Metric | F1 score |
---|---|
Final | 0.810 |
Exact | 0.778 |
Overlap | 0.818 |
Download the package with model:
cd Liner2
wget -O liner26_model_ner_nkjp.zip https://clarin-pl.eu/dspace/bitstream/handle/11321/598/liner26_model_ner_nkjp.zip
Unpack the model:
unzip liner26_model_ner_nkjp.zip
Process a sample CCL file:
./liner2-cli pipe -i ccl -o tuples -f stuff/resources/sample-sentence.xml -m liner26_model_ner_nkjp/config-nkjp-poleval2018.ini
Expected output:
(4,6,null,persname_forename,"Ala","Ala")
(4,11,null,persName,"Ala Nowak","Ala Nowak")
(7,11,null,persname_surname,"Nowak","Nowak")
(20,28,null,placename_settlement,"Warszawie","Warszawie")
DSpace page: https://clarin-pl.eu/dspace/handle/11321/697
Download the package with model:
cd Liner2
wget -0 https://clarin-pl.eu/dspace/handle/11321/697/timex_model_full.tar.gz
Unpack the model:
tar xvzf timex_model_full.tar.gz
Process a sample CCL file:
./liner2-cli pipe -m timex_model_full/timex_model_full/cfg.ini -f timex_model_full/test2.xml -i ccl -o tuples
Expected output:
(0,24,null,t3_date,"Ostatnia niedziela września","Ostatnia niedziela września")
Liner2 can be run as a service which listen to a RabbitMQ queue for upcomming requests (liner2-input). and submit the results to another queue (liner2-output). The input message (send by the client) should have the following format:
ROUTE_KEY PATH
Where:
- ROUTE_KEY — name of a route used to post the results to the output queue. The routing key is used by the client to receive the response for their request ignoring others,
- PATH — an absolute path to the file to process.
For example:
client-001 /tmp/document.txt
The message send by the service will contain path to a file which contains the output of processing.
./liner2-daemon rabbitmq -m liner26_model_ner_nkjp/config-nkjp-poleval2018.ini -i plain:wcrft
Expected output:
INFO [Thread-1] (RabbitMqWorker.java:91) - Listing to RabbitMQ on channel liner2-input ...
Consumer amq.ctag-m6D9fIMI_Qsm61BH7HoxlA registered
It is possible to run more than one instance of ./liner2-daemon rabbitmq
. However, all of them should use the same model and input format.
Folder stuff/python
contains a Python script to test the communication with the service.
The script takes a text to process, stores the texts in a temporal file, generates a routing key, send both to the liner2-input
queue and listen to liner2-output
.
After receiving the response it reads the output file, removes both temporal files and prints the output.
python3 stuff/python/liner2rmq.py -t "Pani Ala Nowak mieszkw w Zielonej Górze"
The output should be as follows:
[INFO] Temp route: route-1DVRP4
[INFO] Temp input file: /tmp/amu7_3at
[INFO] Sent msg 'route-1DVRP4 /tmp/amu7_3at' to liner2-input
[INFO] Temp output file: b'/tmp/amu7_3at-ner.xml'
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE chunkList SYSTEM "ccl.dtd">
<chunkList>
<chunk id="ch1">
<sentence id="s1">
<tok>
<orth>Pani</orth>
<lex disamb="1"><base>pani</base><ctag>subst:sg:nom:f</ctag></lex>
<ann chan="persname">0</ann>
<ann chan="persname_forename">0</ann>
<ann chan="persname_surname">0</ann>
<ann chan="placename_settlement">0</ann>
</tok>
<tok>
<orth>Ala</orth>
<lex disamb="1"><base>Ala</base><ctag>subst:sg:nom:f</ctag></lex>
<ann chan="persname" head="1">1</ann>
<ann chan="persname_forename" head="1">1</ann>
<ann chan="persname_surname">0</ann>
<ann chan="placename_settlement">0</ann>
</tok>
<tok>
<orth>Nowak</orth>
<lex disamb="1"><base>Nowak</base><ctag>subst:sg:nom:m1</ctag></lex>
<lex disamb="1"><base>nowak</base><ctag>subst:sg:nom:m1</ctag></lex>
<ann chan="persname">1</ann>
<ann chan="persname_forename">0</ann>
<ann chan="persname_surname" head="1">1</ann>
<ann chan="placename_settlement">0</ann>
</tok>
<tok>
<orth>mieszka</orth>
<lex disamb="1"><base>mieszkać</base><ctag>fin:sg:ter:imperf</ctag></lex>
<ann chan="persname">0</ann>
<ann chan="persname_forename">0</ann>
<ann chan="persname_surname">0</ann>
<ann chan="placename_settlement">0</ann>
</tok>
<tok>
<orth>w</orth>
<lex disamb="1"><base>w</base><ctag>prep:loc:nwok</ctag></lex>
<ann chan="persname">0</ann>
<ann chan="persname_forename">0</ann>
<ann chan="persname_surname">0</ann>
<ann chan="placename_settlement">0</ann>
</tok>
<tok>
<orth>Zielonej</orth>
<lex disamb="1"><base>zielony</base><ctag>adj:sg:loc:f:pos</ctag></lex>
<ann chan="persname">0</ann>
<ann chan="persname_forename">0</ann>
<ann chan="persname_surname">0</ann>
<ann chan="placename_settlement" head="1">1</ann>
</tok>
<tok>
<orth>Górze</orth>
<lex disamb="1"><base>góra</base><ctag>subst:sg:loc:f</ctag></lex>
<ann chan="persname">0</ann>
<ann chan="persname_forename">0</ann>
<ann chan="persname_surname">0</ann>
<ann chan="placename_settlement">1</ann>
</tok>
</sentence>
</chunk>
</chunkList>
Logs on the server side:
INFO [pool-1-thread-5] (RabbitMqWorker.java:99) - Received path: '/tmp/amu7_3at'
INFO [pool-1-thread-5] (RabbitMqWorker.java:108) - Output saved to /tmp/amu7_3at
INFO [pool-1-thread-5] (RabbitMqWorker.java:121) - Sent /tmp/amu7_3at-ner.xml to liner2-output:route-1DVRP4'
INFO [pool-1-thread-5] (RabbitMqWorker.java:84) - Request processing done