Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bump openvino from 2023.2.0 to 2023.3.0 #6

Open
wants to merge 1 commit into
base: master
Choose a base branch
from

Conversation

dependabot[bot]
Copy link
Contributor

@dependabot dependabot bot commented on behalf of github Aug 10, 2024

Bumps openvino from 2023.2.0 to 2023.3.0.

Release notes

Sourced from openvino's releases.

2023.3.0

Summary of major features and improvements  

  • More Generative AI coverage and framework integrations to minimize code changes.

    • Introducing OpenVINO Gen AI repository on GitHub that demonstrates native C and C++ pipeline samples for Large Language Models (LLMs). String tensors are now supported as inputs and tokenizers natively to reduce overhead and ease production. ​
    • New and noteworthy models validated; Mistral, Zephyr, Qwen, ChatGLM3, and Baichuan.
    • New Jupyter Notebooks for Latent Consistency Models (LCM) and Distil-Whisper. Updated LLM Chatbot notebook to include LangChain, Neural Chat, TinyLlama, ChatGLM3, Qwen, Notus, and Youri models.
    • Torch.compile is now fully integrated with OpenVINO, which now includes a hardware 'options' parameter allowing for seamless inference hardware selection by leveraging the plugin architecture in OpenVINO. ​
  • Broader Large Language Model (LLM) support and more model compression techniques.

    • As part of the Neural Network Compression Framework (NNCF), INT4 weight compression model formats are now fully supported on Intel® Xeon® CPUs in addition to Intel® Core™ and iGPU, adding more performance, lower memory usage, and accuracy opportunity when using LLMs.​
    • Improved performance of transformer-based LLM on CPU and GPU using stateful model technique to increase memory efficiency where internal states are shared among multiple iterations of inference. ​
    • Easier optimization and conversion of Hugging Face models – compress LLM models to INT8 and INT4 with Hugging Face Optimum command line interface and export models to OpenVINO format. Note this is part of Optimum-Intel which needs to be installed separately.
    • Tokenizer and TorchVision transform support is now available in the OpenVINO runtime (via new API) requiring less preprocessing code and enhancing performance by automatically handling this model setup. More details on Tokenizers support in the Ecosystem section.
  • More portability and performance to run AI at the edge, in the cloud, or locally.

    • Full support for 5th Gen Intel® Xeon® Scalable processors (codename Emerald Rapids)
    • Further optimized performance on Intel® Core™ Ultra (codename Meteor Lake) CPU with latency hint, by leveraging both P-core and E-cores.​
    • Improved performance on ARM platforms using throughput hint, which increases efficiency in utilization of CPU cores and memory bandwidth.​
    • Preview JavaScript API to enable node JS development to access JavaScript binding via source code.​ See details below.
    • Improved model serving of LLMs through OpenVINO Model Server. This not only enables LLM serving over KServe v2 gRPC and REST APIs for more flexibility but also improves throughput by running processing like tokenization on the server side.​ More details in the Ecosystem section.

Support Change and Deprecation Notices

  • The OpenVINO™ Development Tools package (pip install openvino-dev) is deprecated and will be removed from installation options and distribution channels beginning with the 2025.0 release. For more details, refer to the OpenVINO Legacy Features and Components page.
  • Ubuntu 18.04 support is discontinued in the 2023.3 LTS release. The recommended version of Ubuntu is 22.04.
  • Starting with 2023.3 OpenVINO longer supports Python 3.7 due to the Python community discontinuing support. Update to a newer version (currently 3.8-3.11) to avoid interruptions.
  • All ONNX Frontend legacy API (known as ONNX_IMPORTER_API) will no longer be available in the 2024.0 release. 'PerfomanceMode.UNDEFINED' property as part of the OpenVINO Python API will be discontinued in the 2024.0 release.
  • Tools:
    • Deployment Manager is deprecated and will be supported for two years according to the LTS policy. Visit the selector tool to see package distribution options or the deployment guide documentation.
    • Accuracy Checker is deprecated and will be discontinued with 2024.0.  
    • Post-Training Optimization Tool (POT) has been deprecated and the 2023.3 LTS is the last release that supports the tool. Developers are encouraged to use the Neural Network Compression Framework (NNCF) for this feature.
    • Model Optimizer is deprecated and will be fully supported until the 2025.0 release. We encourage developers to perform model conversion through OpenVINO Model Converter (API call: OVC). Follow the model conversion transition guide for more details.
    • Deprecated support for a git patch for NNCF integration with huggingface/transformers. The recommended approach is to use huggingface/optimum-intel for applying NNCF optimization on top of models from Hugging Face.
    • Support for Apache MXNet, Caffe, and Kaldi model formats is deprecated and will be discontinued with the 2024.0 release.
  • Runtime:
    • Intel® Gaussian & Neural Accelerator (Intel® GNA) will be deprecated in a future release. We encourage developers to use the Neural Processing Unit (NPU) for low-powered systems like Intel® CoreTM Ultra or 14th generation and beyond.
    • OpenVINO C++/C/Python 1.0 APIs are deprecated and will be discontinued in the 2024.0 release. Please use API 2.0 in your applications going forward to avoid disruption. OpenVINO property Affinity API will be deprecated from 2024.0 and will be discontinued in 2025.0. It will be replaced with CPU binding configurations (ov::hint::enable_cpu_pinning).

You can find OpenVINO™ toolkit 2023.3 release here:

Acknowledgements

... (truncated)

Commits

Dependabot compatibility score

You can trigger a rebase of this PR by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot show <dependency name> ignore conditions will show all of the ignore conditions of the specified dependency
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

Note
Automatic rebases have been disabled on this pull request as it has been open for over 30 days.

Bumps [openvino](https://github.com/openvinotoolkit/openvino) from 2023.2.0 to 2023.3.0.
- [Release notes](https://github.com/openvinotoolkit/openvino/releases)
- [Commits](openvinotoolkit/openvino@2023.2.0...2023.3.0)

---
updated-dependencies:
- dependency-name: openvino
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
@dependabot dependabot bot added dependencies Pull requests that update a dependency file python Pull requests that update Python code labels Aug 10, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
dependencies Pull requests that update a dependency file python Pull requests that update Python code
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants