This is an official GitHub Repository for paper "Cognitive Navigation for Intelligent Mobile Robots: A Learning-Based Approach with Topological Memory Configuration", which is accepted in IEEE/CAA Journal of Automatica Sinica.
The source code is tested in the following setting.
- Python 3.7
- pytorch 1.12
- habitat-sim 0.2.1
- habitat-lab 0.2.1
Please refer to habitat-sim and habitat-lab for installation.
The recommended folder structure of habitat-lab:
habitat-lab
└──habitat
└── data
└── datasets
│ └── pointnav
│ └── gibson
│ └── v1
│ └── train
│ └── val
└── scene_datasets
└── gibson_habitat
└── *.glb, *.navmeshs
-
Data generation
python collect_IL_data.py --ep-per-env 200 --num-procs 4 --split train --data-dir /path/to/save/data
This will generate the data for imitation learning.
-
Training
python train_bc.py --config configs/ltm.yaml --stop --gpu 0 --data-dir /path/to/save/data
-
Evaluation
python evaluate_random.py --config configs/ltm.yaml --version-name test --eval-ckpt your_model_ckpt.pt --stop --diff random