Exchangeable Models in Meta Reinforcement Learning
I. Korshunova, J. Degrave, J. Dambre, A. Gretton, F. Huszár
Lifelong Learning Workshop at ICML 2020
The code was used with the following settings:
- python3
- tensorflow-gpu==1.14.0
- tensorflow-probability==0.7.0
- gym==0.17.1
- mujoco-py== 2.0.2.9
- mujoco200
To train and then test BrunoSAC on Cheetah-Dir run:
python meta_cheetah_dir.py --train
python meta_cheetah_dir.py --test
Similarly, for the oracle:
python meta_cheetah_dir.py --train --oracle
python meta_cheetah_dir.py --test --oracle
To plot the learning curves and test rewards:
python -m plots.plot_train_cheetah_dir
python -m plots.plot_test_cheetah_dir
The same commands can be used with meta_cheetah_vel.py
for the Cheetah-Vel experiments.
Please send an email to irene.korshunova@gmail.com
, and I'll be happy to answer.