-
Notifications
You must be signed in to change notification settings - Fork 132
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
14 changed files
with
1,507 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
# Copyright 2023 OmniSafe Team. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""OffPolicy Latent Adapter for OmniSafe.""" | ||
|
||
from __future__ import annotations | ||
|
||
from typing import Any | ||
|
||
import numpy as np | ||
import torch | ||
from gymnasium.spaces import Box | ||
|
||
from omnisafe.adapter.online_adapter import OnlineAdapter | ||
from omnisafe.common.buffer import OffPolicySequenceBuffer | ||
from omnisafe.common.latent import CostLatentModel | ||
from omnisafe.common.logger import Logger | ||
from omnisafe.envs.wrapper import ( | ||
ActionRepeat, | ||
ActionScale, | ||
AutoReset, | ||
CostNormalize, | ||
ObsNormalize, | ||
RewardNormalize, | ||
TimeLimit, | ||
Unsqueeze, | ||
) | ||
from omnisafe.models.actor_critic.constraint_actor_q_critic import ConstraintActorQCritic | ||
from omnisafe.utils.config import Config | ||
from omnisafe.utils.model import ObservationConcator | ||
|
||
|
||
class OffPolicyLatentAdapter(OnlineAdapter): | ||
_current_obs: torch.Tensor | ||
_ep_ret: torch.Tensor | ||
_ep_cost: torch.Tensor | ||
_ep_len: torch.Tensor | ||
|
||
def __init__( # pylint: disable=too-many-arguments | ||
self, | ||
env_id: str, | ||
num_envs: int, | ||
seed: int, | ||
cfgs: Config, | ||
) -> None: | ||
"""Initialize a instance of :class:`OffPolicyAdapter`.""" | ||
super().__init__(env_id, num_envs, seed, cfgs) | ||
self._observation_concator: ObservationConcator = ObservationConcator( | ||
self._cfgs.algo_cfgs.latent_dim_1 + self._cfgs.algo_cfgs.latent_dim_2, | ||
self.action_space.shape, | ||
self._cfgs.algo_cfgs.num_sequences, | ||
device=self._device, | ||
) | ||
self._current_obs, _ = self.reset() | ||
self._max_ep_len: int = 1000 | ||
self._reset_log() | ||
self.z1 = None | ||
self.z2 = None | ||
self._reset_sequence_queue = False | ||
|
||
def _wrapper( | ||
self, | ||
obs_normalize: bool = True, | ||
reward_normalize: bool = True, | ||
cost_normalize: bool = True, | ||
) -> None: | ||
"""Wrapper the environment. | ||
.. hint:: | ||
OmniSafe supports the following wrappers: | ||
+-----------------+--------------------------------------------------------+ | ||
| Wrapper | Description | | ||
+=================+========================================================+ | ||
| TimeLimit | Limit the time steps of the environment. | | ||
+-----------------+--------------------------------------------------------+ | ||
| AutoReset | Reset the environment when the episode is done. | | ||
+-----------------+--------------------------------------------------------+ | ||
| ObsNormalize | Normalize the observation. | | ||
+-----------------+--------------------------------------------------------+ | ||
| RewardNormalize | Normalize the reward. | | ||
+-----------------+--------------------------------------------------------+ | ||
| CostNormalize | Normalize the cost. | | ||
+-----------------+--------------------------------------------------------+ | ||
| ActionScale | Scale the action. | | ||
+-----------------+--------------------------------------------------------+ | ||
| Unsqueeze | Unsqueeze the step result for single environment case. | | ||
+-----------------+--------------------------------------------------------+ | ||
Args: | ||
obs_normalize (bool, optional): Whether to normalize the observation. Defaults to True. | ||
reward_normalize (bool, optional): Whether to normalize the reward. Defaults to True. | ||
cost_normalize (bool, optional): Whether to normalize the cost. Defaults to True. | ||
""" | ||
if self._env.need_time_limit_wrapper: | ||
self._env = TimeLimit(self._env, device=self._device, time_limit=1000) | ||
if self._env.need_auto_reset_wrapper: | ||
self._env = AutoReset(self._env, device=self._device) | ||
if obs_normalize: | ||
self._env = ObsNormalize(self._env, device=self._device) | ||
if reward_normalize: | ||
self._env = RewardNormalize(self._env, device=self._device) | ||
if cost_normalize: | ||
self._env = CostNormalize(self._env, device=self._device) | ||
self._env = ActionScale(self._env, device=self._device, low=-1.0, high=1.0) | ||
self._env = ActionRepeat(self._env, times=2, device=self._device) | ||
|
||
if self._env.num_envs == 1: | ||
self._env = Unsqueeze(self._env, device=self._device) | ||
|
||
@property | ||
def latent_space(self) -> Box: | ||
"""Get the latent space.""" | ||
return Box( | ||
low=-np.inf, | ||
high=np.inf, | ||
shape=(self._cfgs.algo_cfgs.latent_dim_1 + self._cfgs.algo_cfgs.latent_dim_2,), | ||
) | ||
|
||
def eval_policy( # pylint: disable=too-many-locals | ||
self, | ||
episode: int, | ||
agent: ConstraintActorQCritic, | ||
logger: Logger, | ||
) -> None: | ||
for _ in range(episode): | ||
ep_ret, ep_cost, ep_len = 0.0, 0.0, 0 | ||
obs, _ = self._eval_env.reset() | ||
obs = obs.to(self._device) | ||
|
||
done = False | ||
while not done: | ||
act = agent.step(obs, deterministic=True) | ||
obs, reward, cost, terminated, truncated, info = self._eval_env.step(act) | ||
obs, reward, cost, terminated, truncated = ( | ||
torch.as_tensor(x, dtype=torch.float32, device=self._device) | ||
for x in (obs, reward, cost, terminated, truncated) | ||
) | ||
ep_ret += info.get('original_reward', reward).cpu() | ||
ep_cost += info.get('original_cost', cost).cpu() | ||
ep_len += 1 | ||
done = bool(terminated[0].item()) or bool(truncated[0].item()) | ||
|
||
logger.store( | ||
{ | ||
'Metrics/TestEpRet': ep_ret, | ||
'Metrics/TestEpCost': ep_cost, | ||
'Metrics/TestEpLen': ep_len, | ||
}, | ||
) | ||
|
||
def pre_process(self, latent_model, concated_obs): | ||
with torch.no_grad(): | ||
feature = latent_model.encoder(concated_obs.last_state) | ||
|
||
if self.z2 is None: | ||
z1_mean, z1_std = latent_model.z1_posterior_init(feature) | ||
self.z1 = z1_mean + torch.randn_like(z1_std) * z1_std | ||
z2_mean, z2_std = latent_model.z2_posterior_init(self.z1) | ||
self.z2 = z2_mean + torch.randn_like(z2_std) * z2_std | ||
else: | ||
z1_mean, z1_std = latent_model.z1_posterior( | ||
torch.cat([feature.squeeze(), self.z2.squeeze(), concated_obs.last_action], dim=-1) | ||
) | ||
self.z1 = z1_mean + torch.randn_like(z1_std) * z1_std | ||
z2_mean, z2_std = latent_model.z2_posterior( | ||
torch.cat([self.z1.squeeze(), self.z2.squeeze(), concated_obs.last_action], dim=-1) | ||
) | ||
self.z2 = z2_mean + torch.randn_like(z2_std) * z2_std | ||
|
||
return torch.cat([self.z1, self.z2], dim=-1).squeeze() | ||
|
||
def rollout( # pylint: disable=too-many-locals | ||
self, | ||
rollout_step: int, | ||
agent: ConstraintActorQCritic, | ||
latent_model: CostLatentModel, | ||
buffer: OffPolicySequenceBuffer, | ||
logger: Logger, | ||
use_rand_action: bool, | ||
) -> None: | ||
for step in range(rollout_step): | ||
if not self._reset_sequence_queue: | ||
buffer.reset_sequence_queue(self._current_obs) | ||
self._observation_concator.reset_episode(self._current_obs) | ||
self._reset_sequence_queue = True | ||
|
||
if use_rand_action: | ||
act = act = (torch.rand(self.action_space.shape) * 2 - 1).to(self._device) # type: ignore | ||
else: | ||
act = agent.step( | ||
self.pre_process(latent_model, self._observation_concator), deterministic=False | ||
) | ||
|
||
next_obs, reward, cost, terminated, truncated, info = self.step(act) | ||
step += info.get('num_step', 1) - 1 | ||
|
||
real_next_obs = next_obs.clone() | ||
|
||
self._observation_concator.append(next_obs, act) | ||
|
||
self._log_value(reward=reward, cost=cost, info=info) | ||
|
||
for idx, done in enumerate(torch.logical_or(terminated, truncated)): | ||
if done: | ||
self._log_metrics(logger, idx) | ||
self._reset_log(idx) | ||
self.z1 = None | ||
self.z2 = None | ||
self._reset_sequence_queue = False | ||
if 'final_observation' in info: | ||
real_next_obs[idx] = info['final_observation'][idx] | ||
|
||
buffer.store( | ||
obs=real_next_obs, | ||
act=act, | ||
reward=reward, | ||
cost=cost, | ||
done=torch.logical_and(terminated, torch.logical_xor(terminated, truncated)), | ||
) | ||
|
||
self._current_obs = next_obs | ||
|
||
def _log_value( | ||
self, | ||
reward: torch.Tensor, | ||
cost: torch.Tensor, | ||
info: dict[str, Any], | ||
) -> None: | ||
self._ep_ret += info.get('original_reward', reward).cpu() | ||
self._ep_cost += info.get('original_cost', cost).cpu() | ||
self._ep_len += info.get('num_step', 1) | ||
|
||
def _log_metrics(self, logger: Logger, idx: int) -> None: | ||
logger.store( | ||
{ | ||
'Metrics/EpRet': self._ep_ret[idx], | ||
'Metrics/EpCost': self._ep_cost[idx], | ||
'Metrics/EpLen': self._ep_len[idx], | ||
}, | ||
) | ||
|
||
def _reset_log(self, idx: int | None = None) -> None: | ||
if idx is None: | ||
self._ep_ret = torch.zeros(self._env.num_envs) | ||
self._ep_cost = torch.zeros(self._env.num_envs) | ||
self._ep_len = torch.zeros(self._env.num_envs) | ||
else: | ||
self._ep_ret[idx] = 0.0 | ||
self._ep_cost[idx] = 0.0 | ||
self._ep_len[idx] = 0.0 | ||
|
||
def reset( | ||
self, | ||
seed: int | None = None, | ||
options: dict[str, Any] | None = None, | ||
) -> tuple[torch.Tensor, dict[str, Any]]: | ||
obs, info = self._env.reset(seed=seed, options=options) | ||
self._observation_concator.reset_episode(obs) | ||
return obs, info |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -34,6 +34,7 @@ | |
TD3PID, | ||
DDPGLag, | ||
SACLag, | ||
SafeSLAC, | ||
TD3Lag, | ||
) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.