Skip to content

Pillzumi/Pillmotion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pillmotion

A flexible video generation system that makes it easy to create videos using different templates while sharing core functionality like audio generation and subtitle synchronization. Easily extendable to your own templates, and your own agents.

Features

  • Multiple video template support (Story mode, Meme coin mode)
  • Automated audio generation and subtitle synchronization
  • Word-to-word transcription using whisper_timestamped
  • Extensible template system
  • Trading view integration for meme coin data

Example videos

Setup

Prerequisites

  • Docker
  • Bun
  • FFmpeg

Installation

  1. Build the transcription service:
docker build -t transcribe .
  1. Start the transcription service:
docker run -d \
 --name transcribe \
 -p 5005:5005 \
 -v $(pwd)/public:/app/video/public \
 transcribe \
 gunicorn \
 --timeout 120 \
 -w 1 \
 -b 0.0.0.0:5005 \
 --access-logfile access.log \
 --error-logfile error.log \
 --chdir /app/video \
 "transcribe:app"
  1. Add .env file based on .env.example
  • OpenAI API key (for generating transcript)
  • Claude API key (cleans srt files)
  • ElevenLabs API key + voice ids (for audio generation)
  • Social Data API key (if you want to use the meme coin template)
  1. Run bun install to install dependencies

Usage

Generate Story Video

bun run build.ts -t story

Generate Meme Coin Video

bun run build.ts -t meme -s <COIN_SYMBOL>
# Example:
bun run build.ts -t meme -s PILLZUMI

How It Works

Core Functionality

The system uses whisper_timestamped for precise word-to-word transcription, which is then converted to SRT format. The transcription is cleaned up using the original transcript as context to correct any model errors.

Audio files are mapped to specific speakers using the transcript data. When generating SRT files, each audio segment (e.g., 'redpill-0.mp3') gets a corresponding SRT file ('redpill-0.srt'). All audio files are ultimately concatenated into a single public/audio.mp3 file, while maintaining speaker timing information through the SRT files.

Templates

The project includes two main templates:

  1. Story Template

    • Uses pre-generated story transcript
    • Example data provided in the data folder
    • Requires external story transcript generation system. We use Eliza for our story generation pipeline.
  2. Meme Coin Template

    • End-to-end implementation
    • Fetches solana memecoin data from Trading View
    • Generates transcripts automatically
    • Uses the same core audio and subtitle generation system

Extending with New Templates

To add a new template (e.g., "shitpost"):

  1. Create ShitpostComposition.tsx
  2. Add the composition to Root.tsx (maybe with id="Shitpost")
  3. Add generateShitpostContextContent function in contextGenerators.ts
  4. Update invariantContext function with new variables that are used by this new template.
  5. Update types in index.d.ts
  6. add generateShitpostTranscript function in transcript.ts
  7. Add switch case for this new template in build.ts

Project Structure

  • src/tmp/context.tsx: Dynamic context file for all templates
  • src/Root.tsx: Contains all template compositions
  • contextGenerators.ts: Generates template specific context
  • utils/: Helper functions and utilities
  • data/: Example story data

Video generation is slow because these templates run with concurrency 1 because adding concurrency adds a few minor visual bugs in the subtitles. But if you need it to go fast, change the concurrency in the scripts of package.json. To see the max concurrency your computer can do, run bun run os.ts.

System Requirements

  • At least 8GB RAM recommended
  • FFmpeg installed on your system
  • Node.js 18+ (for Bun compatibility)
  • Disk space for video processing and docker image (at least 6GB recommended)

Troubleshooting

Common Issues

  1. Docker Service Not Running

    # Start Docker service
    sudo systemctl start docker
  2. Port 5005 Already in Use

    # Find and kill process using port 5005
    lsof -i :5005
    kill -9 <PID>
  3. FFmpeg Missing

    # MacOS
    brew install ffmpeg
    # Ubuntu
    sudo apt-get install ffmpeg

Logs

  • Check Docker logs: docker logs transcribe
  • Application logs are in access.log and error.log

About

Automated Video Generation Solution

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published