Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
teowu authored Feb 13, 2024
1 parent c7d625d commit c76a3bf
Showing 1 changed file with 7 additions and 182 deletions.
189 changes: 7 additions & 182 deletions leaderboards/README.md
Original file line number Diff line number Diff line change
@@ -1,188 +1,13 @@
# Hot Leaderboards @ Oct 30
# Hot Leaderboards

<div align="center">

<div>
_Join the competition for low-level vision now!_
</div>

<div>
_version_: v1.0.2.1030wip; _Timeliness_: Updated on 30th Oct.
</div>

</div>
Visit the new leaderboard at our [HF space](https://huggingface.co/spaces/q-future/Q-Bench-Leaderboard)!

## Overall Leaderboards
<script
type="module"
src="https://gradio.s3-us-west-2.amazonaws.com/4.17.0/gradio.js"
></script>

<div align="center">

| Rank | [A1: Perception](#leaderboards-for-a1-perception) (dev set) | [A1: Perception](#leaderboards-for-a1-perception) (test set) | [A2: Description](#leaderboards-for-a2-description) | [A3: Assessment](#leaderboards-for-a3-assessment) |
|:----:|:-------------------------------------------------------------------:|:-------------------------------------------------------------------:|:-------------------------------------------------------------:|:----------------------------------------------------------:|
| 🥇 | InternLM-XComposer-VL (0.6535) | InternLM-XComposer-VL (0.6435) | InternLM-XComposer-VL (4.21/6) | InternLM-XComposer-VL (0.542,0.581) |
| 🥈 | LLaVA-v1.5-13B (0.6214) | InstructBLIP-T5-XL (0.6194) | Kosmos-2 (4.03/6) | Qwen-VL (0.475,0.506) |
| 🥉 | InstructBLIP-T5-XL (0.6147) | Qwen-VL (0.6167) | mPLUG-Owl (3.94/6) | LLaVA-v1.5-13B (0.444,0.473) |

</div>


## Leaderboards for (A1): Perception


About the partition of `dev` and `test` subsets, please see [our dataset release notes](../data_release/). As some models excel on original testing pipeline while some others perform better under PPL-based testing, we maintain two leaderboards for two different testing methods. See [examples](../example_code_for_idefics) for their different settings.

### Original Testing Pipeline
- 14 models tested
- via Multi-Choice Questions

#### Accuracies on Open-set (`dev`)

|**Model Name** | yes-or-no | what | how | distortion | others | in-context distortion | in-context others | overall |
| - | - | - | - | - | - | -| - | -|
| random guess | 0.5000 | 0.2786 | 0.3331 | 0.3789 | 0.3848 | 0.3828 | 0.3582 | 0.3780 |
| LLaVA-v1.5 (Vicuna-v1.5-7B) | 0.6636 | 0.5819 | 0.5051 | 0.4942 | 0.6574 | 0.5461 | 0.7061 | 0.5866 |
| LLaVA-v1.5 (Vicuna-v1.5-13B) | 0.6527 | 0.6438 | 0.5659 | 0.5603 | 0.6713 | 0.6118 | 0.6735 | 0.6214 |
| InternLM-XComposer-VL (InternLM) | 0.6945 | 0.6527 | 0.6085 | 0.6167 | 0.7014 | 0.5691 | 0.7510 | 0.6535 |
| IDEFICS-Instruct (LLaMA-7B) | 0.5618 | 0.4469 | 0.4402 | 0.4280 | 0.5417 | 0.4474 | 0.5633 | 0.4870 |
| Qwen-VL (QwenLM) | 0.6309 | 0.5819 | 0.5639 | 0.5058 | 0.6273 | 0.5789 | 0.7388 | 0.5940 |
| Shikra (Vicuna-7B) | 0.6564 | 0.4735 | 0.4909 | 0.4883 | 0.5949 | 0.5000 | 0.6408 | 0.5465 |
| Otter-v1 (MPT-7B) | 0.5709 | 0.4071 | 0.3955 | 0.4222 | 0.4931 | 0.4408 | 0.5265 | 0.4635 |
| InstructBLIP (Flan-T5-XL) | 0.6764 | 0.5996 | 0.5598 | 0.5623 | 0.6551 | 0.5822 | 0.6939 | 0.6147 |
| InstructBLIP (Vicuna-7B) | 0.7164 | 0.5265 | 0.4381 | 0.4864 | 0.6250 | 0.5559 | 0.6490 | 0.5672 |
| VisualGLM-6B (GLM-6B) | 0.6018 | 0.5420 | 0.4625 | 0.5175 | 0.5440 | 0.5362 | 0.5714 | 0.5378 |
| mPLUG-Owl (LLaMA-7B) | 0.6600 | 0.5487 | 0.4402 | 0.5136 | 0.5509 | 0.5428 | 0.6571 | 0.5538 |
| LLaMA-Adapter-V2 | 0.6618 | 0.5929 | 0.5213 | 0.5739 | 0.5625 | 0.6316 | 0.6490 | 0.5946 |
| LLaVA-v1 (Vicuna-13B) | 0.5400 | 0.5310 | 0.5538 | 0.4864 | 0.5463 | 0.5559 | 0.6327 | 0.5418 |
| MiniGPT-4 (Vicuna-13B) | 0.5582 | 0.5022 | 0.4037 | 0.4202 | 0.4838 | 0.5197 | 0.6122 | 0.4903 |



#### Accuracies on Close-set (`test`)


Results of [GPT-4V](https://chat.openai.com) and non-expert human:

|**Participant Name** | yes-or-no | what | how | distortion | others | in-context distortion | in-context others | overall |
| - | - | - | - | - | - | -| - | -|
| GPT-4V (Close-Source Model) | 0.7792 | 0.7918 | 0.6268 | 0.7058 | 0.7303 | 0.7466 | 0.7795 | 0.7336 |
| Junior-level Human | 0.8248 | 0.7939 | 0.6029 | 0.7562 | 0.7208 | 0.7637 | 0.7300 | 0.7431 |
| Senior-level Human | 0.8431 | 0.8894 | 0.7202 | 0.7965 | 0.7947 | 0.8390 | 0.8707 | 0.8174 |

GPT-4V is primarily a Junior-level Human.

Results of Open-source models:

|**Model Name** | yes-or-no | what | how | distortion | others | in-context distortion | in-context others | overall |
| - | - | - | - | - | - | -| - | -|
| random guess | 0.5000 | 0.2848 | 0.3330 | 0.3724 | 0.3850 | 0.3913 | 0.3710 | 0.3794 |
| LLaVA-v1.5 (Vicuna-v1.5-7B) | 0.6460 | 0.5922 | 0.5576 | 0.4798 | 0.6730 | 0.5890 | 0.7376 | 0.6007 |
| LLaVA-v1.5 (Vicuna-v1.5-13B) | 0.6496 | 0.6486 | 0.5412 | 0.5355 | 0.6659 | 0.5890 | 0.7148 | 0.6140 |
| InternLM-XComposer-VL (InternLM) | 0.6843 | 0.6204 | 0.6193 | 0.5681 | 0.7041 | 0.5753 | 0.7719 | 0.6435 |
| IDEFICS-Instruct (LLaMA-7B) | 0.6004 | 0.4642 | 0.4671 | 0.4038 | 0.5990 | 0.4726 | 0.6477 | 0.5151 |
| Qwen-VL (QwenLM) | 0.6533 | 0.6074 | 0.5844 | 0.5413 | 0.6635 | 0.5822 | 0.7300 | 0.6167 |
| Shikra(Vicuna-7B) | 0.6909 | 0.4793 | 0.4671 | 0.4731 | 0.6086 | 0.5308 | 0.6477 | 0.5532 |
| Otter-v1 (MPT-7B) | 0.5766 | 0.3970 | 0.4259 | 0.4212 | 0.4893 | 0.4760 | 0.5417 | 0.4722 |
| InstructBLIP (Flan-T5-XL) | 0.6953 | 0.5900 | 0.5617 | 0.5731 | 0.6551 | 0.5651 | 0.7121 | 0.6194 |
| InstructBLIP (Vicuna-7B) | 0.7099 | 0.5141 | 0.4300 | 0.4500 | 0.6301 | 0.5719 | 0.6439 | 0.5585 |
| VisualGLM-6B (GLM-6B) | 0.6131 | 0.5358 | 0.4403 | 0.4856 | 0.5489 | 0.5548 | 0.5779 | 0.5331 |
| mPLUG-Owl (LLaMA-7B) | 0.7245 | 0.5488 | 0.4753 | 0.4962 | 0.6301 | 0.6267 | 0.6667 | 0.5893 |
| LLaMA-Adapter-V2 | 0.6618 | 0.5466 | 0.5165 | 0.5615 | 0.6181 | 0.5925 | 0.5455 | 0.5806 |
| LLaVA-v1 (Vicuna-13B) | 0.5712 | 0.5488 | 0.5185 | 0.4558 | 0.5800 | 0.5719 | 0.6477 | 0.5472 |
| MiniGPT-4 (Vicuna-13B) | 0.6077 | 0.5033 | 0.4300 | 0.4558 | 0.5251 | 0.5342 | 0.6098 | 0.5177 |


### (*Additional*) PPL-based Testing Pipeline

- 11 models tested
- via Losses of Different Answers
- *non-finalized work-in-progress version, may update*

*No options are provided in prompts!*

#### Accuracies on Open-set (`dev`)

|**Model Name** | yes-or-no | what | how | distortion | others | in-context distortion | in-context others | overall |
| - | - | - | - | - | - | -| - | -|
idefics | 0.6109 | 0.5332 | 0.4422 | 0.4942 | 0.5625 | 0.4704 | 0.6327 | 0.5318 |
instructblip_t5 | 0.6200 | 0.4425 | 0.3996 | 0.4280 | 0.5347 | 0.4737 | 0.5837 | 0.4936 |
instructblip_vicuna | 0.5964 | 0.4137 | 0.4158 | 0.4689 | 0.4699 | 0.4704 | 0.5429 | 0.4816 |
kosmos_2 | 0.5800 | 0.3562 | 0.3915 | 0.3969 | 0.4606 | 0.4408 | 0.5551 | 0.4502 |
llama_adapter_v2 | 0.5691 | 0.3208 | 0.4057 | 0.3852 | 0.4491 | 0.4671 | 0.5061 | 0.4401 |
llava_v1.5 | 0.6764 | 0.4071 | 0.3469 | 0.4280 | 0.5347 | 0.4803 | 0.5306 | 0.4863 |
llava_v1 | 0.5945 | 0.4071 | 0.3671 | 0.3872 | 0.5116 | 0.4671 | 0.5306 | 0.4629 |
minigpt4_13b | 0.5509 | 0.4248 | 0.3347 | 0.4047 | 0.4722 | 0.4112 | 0.5020 | 0.4415 |
mplug_owl | 0.7909 | 0.4027 | 0.3793 | 0.4981 | 0.5602 | 0.5757 | 0.5347 | 0.5378 |
otter_v1 | 0.6782 | 0.4248 | 0.4462 | 0.4514 | 0.5833 | 0.5164 | 0.5878 | 0.5251 |
shikra | 0.6655 | 0.4690 | 0.5030 | 0.4669 | 0.6042 | 0.5230 | 0.6776 | **0.5525** (rank 1) |

#### Accuracies on Close-set (`test`)

|**Model Name** | yes-or-no | what | how | distortion | others | in-context distortion | in-context others | overall |
| - | - | - | - | - | - | -| - | -|
idefics | 0.6752 | 0.5163 | 0.4280 | 0.4712 | 0.6396 | 0.4726 | 0.6250 | 0.5458 |
instructblip_t5 | 0.6661 | 0.4707 | 0.3971 | 0.4173 | 0.6181 | 0.4486 | 0.6364 | 0.5184 |
instructblip_vicuna | 0.6843 | 0.4469 | 0.3827 | 0.4981 | 0.5060 | 0.4726 | 0.5985 | 0.5130 |
kosmos_2 | 0.6496 | 0.3861 | 0.4239 | 0.4038 | 0.5585 | 0.4658 | 0.6061 | 0.4950 |
llama_adapter_v2 | 0.6551 | 0.3536 | 0.4012 | 0.4154 | 0.4964 | 0.4829 | 0.5758 | 0.4796 |
llava_v1.5 | 0.7500 | 0.4685 | 0.3519 | 0.4453 | 0.5776 | 0.5171 | 0.6578 | 0.5338 |
llava_v1 | 0.6642 | 0.4447 | 0.3951 | 0.4096 | 0.5847 | 0.4726 | 0.6250 | 0.5090 |
minigpt4_13b | 0.5730 | 0.4577 | 0.3580 | 0.4096 | 0.4988 | 0.4281 | 0.5758 | 0.4676 |
mplug_owl | 0.8449 | 0.4013 | 0.3951 | 0.4981 | 0.5752 | 0.6027 | 0.6212 | **0.5619** (rank 1) |
otter_v1 | 0.6971 | 0.4382 | 0.4568 | 0.4288 | 0.6372 | 0.4897 | 0.6553 | 0.5391 |
shikra | 0.6515 | 0.4729 | 0.5021 | 0.4269 | 0.6205 | 0.5034 | 0.7197 | 0.5478 |

## Leaderboards for (A2): Description


Abbreviations for dimensions: *comp: completeness, prec: precision, rele: relevance*

| **Model Name** | p_{0, comp} | p_{0, comp} | p_{2, comp} | s_{compl} | p_{0, prec} | p_{0, prec} | p_{2, prec} | s_{prec} | p_{0, rele} | p_{0, rele} | p_{2, rele} | s_{rele} | s_{sum} |
| - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| LLaVA-v1.5 (Vicuna-v1.5-13B) | 27.68% | 53.78% | 18.55% | 0.91/2.00 | 25.45% | 21.47% | 53.08% | 1.28/2.00 | 6.31% | 58.75% | 34.94% | 1.29/2.00 | 3.47/6.00 |
| InternLM-XComposer-VL (InternLM) | 19.94% | 51.82% | 28.24% | 1.08/2.00 | 22.59% | 28.99% | 48.42% | 1.26/2.00 | 1.05% | 10.62% | 88.32% | 1.87/2.00 | 4.21/6.00 |
| IDEFICS-Instruct (LLaMA-7B) | 28.91% | 59.16% | 11.93% | 0.83/2.00 | 34.68% | 27.86% | 37.46% | 1.03/2.00 | 3.90% | 59.66% | 36.44% | 1.33/2.00 | 3.18/6.00 |
| Qwen-VL (QwenLM) | 26.34% | 49.13% | 24.53% | 0.98/2.00 | 50.62% | 23.44% | 25.94% | 0.75/2.00 | 0.73% | 35.56% | 63.72% | 1.63/2.00 | 3.36/6.00 |
| Shikra (Vicuna-7B) | 21.14% | 68.33% | 10.52% | 0.89/2.00 | 30.33% | 28.30% | 41.37% | 1.11/2.00 | 1.14% | 64.36% | 34.50% | 1.33/2.00 | 3.34/6.00 |
| Otter-v1 (MPT-7B) | 22.38% | 59.36% | 18.25% | 0.96/2.00 | 40.68% | 35.99% | 23.33% | 0.83/2.00 | 1.95% | 13.2% | 84.85% | 1.83/2.00 | 3.61/6.00 |
| Kosmos-2 | 8.76% | 70.91% | 20.33% | 1.12/2.00 | 29.45% | 34.75% | 35.81% | 1.06/2.00 | 0.16% | 14.77% | 85.06% | 1.85/2.00 | 4.03/6.00 |
| InstructBLIP (Flan-T5-XL) | 23.16% | 66.44% | 10.40% | 0.87/2.00 | 34.85% | 26.03% | 39.12% | 1.04/2.00 | 14.71% | 59.87% | 25.42% | 1.11/2.00 | 3.02/6.00 |
| InstructBLIP (Vicuna-7B) | 29.73% | 61.47% | 8.80% | 0.79/2.00 | 27.84% | 23.52% | 48.65% | 1.21/2.00 | 27.40% | 61.29% | 11.31% | 0.84/2.00 | 2.84/6.00 |
| VisualGLM-6B (GLM-6B) | 30.75% | 56.64% | 12.61% | 0.82/2.00 | 38.64% | 26.18% | 35.18% | 0.97/2.00 | 6.14% | 67.15% | 26.71% | 1.21/2.00 | 2.99/6.00 |
| mPLUG-Owl (LLaMA-7B) | 28.28% | 37.69% | 34.03% | 1.06/2.00 | 26.75% | 18.18% | 55.07% | 1.28/2.00 | 3.03% | 33.82% | 63.15% | 1.6/2.00 | 3.94/6.00 |
| LLaMA-Adapter-V2 | 30.44% | 53.99% | 15.57% | 0.85/2.00 | 29.41% | 25.79% | 44.8% | 1.15/2.00 | 1.50% | 52.75% | 45.75% | 1.44/2.00 | 3.45/6.00 |
| LLaVA-v1 (Vicuna-13B) | 34.10% | 40.52% | 25.39% | 0.91/2.00 | 30.02% | 15.15% | 54.83% | 1.25/2.00 | 1.06% | 38.03% | 60.91% | 1.6/2.00 | 3.76/6.00 |
| MiniGPT-4 (Vicuna-13B) | 34.01% | 32.15% | 33.85% | 1.00/2.00 | 29.20% | 15.27% | 55.53% | 1.26/2.00 | 6.88% | 45.65% | 47.48% | 1.41/2.00 | 3.67/6.00 |


## Leaderboards for (A3): Assessment

The datasets can be found [here](../a3_iqa_databases/).

See [IQA_outputs/eval.ipynb](IQA_outputs/eval.ipynb) for our ablation experiments.


| **Model Name**|KoNIQ-10k | SPAQ| LIVE-FB| LIVE-itw| CGIQA-6K| AGIQA-3K| KADID-10K|Average
| -| -| -| -| -| -| -| -| -|
| NIQE | 0.316/0.377 | 0.693/0.669 | 0.211/0.288 | 0.480/0.451 | 0.075/0.056 | 0.562/0.517 | 0.374/0.428 |0.387/0.398|
| CLIP-ViT-Large-14 | 0.468/0.505 | 0.385/0.389 | 0.218/0.237 | 0.307/0.308 | 0.285/0.290 | 0.436/0.458 | 0.376/0.388 |0.354/0.368|
| LLaVA-v1.5 (Vicuna-v1.5-7B) | 0.463/0.459 | 0.443/0.467 | 0.305/0.321 | 0.344/0.358 | **0.321/0.333** | 0.672/0.738 | 0.417/0.440 |0.424/0.445|
| LLaVA-v1.5 (Vicuna-v1.5-13B) | 0.448/0.460 | 0.563/0.584 | 0.310/0.339 | 0.445/0.481 | 0.285/0.297 | 0.664/0.754 | 0.390/0.400 |0.444/0.474|
| InternLM-XComposer-VL (InternLM) | **0.568/0.616** | **0.731/0.751** | **0.358/0.413** | **0.619/0.678** | 0.246/0.268 | **0.734/0.777** | 0.540/0.563 |**0.542/0.581**|
| IDEFICS-Instruct (LLaMA-7B) | 0.375/0.400 | 0.474/0.484 | 0.235/0.24 | 0.409/0.428 | 0.244/0.227 | 0.562/0.622 | 0.370/0.373 |0.381/0.396|
| Qwen-VL (QwenLM) | 0.470/0.546 | 0.676/0.669 | 0.298/0.338 | 0.504/0.532 | 0.273/0.284 | 0.617/0.686 | 0.486/0.486 |0.475/0.506|
| Shikra (Vicuna-7B) | 0.314/0.307 | 0.32/0.337 | 0.237/0.241 | 0.322/0.336 | 0.198/0.201 | 0.640/0.661 | 0.324/0.332 |0.336/0.345|
| Otter-v1 (MPT-7B) | 0.406/0.406 | 0.436/0.441 | 0.143/0.142 | -0.008/0.018 | 0.254/0.264 | 0.475/0.481 | **0.557/0.577** |0.323/0.333|
| Kosmos-2 | 0.255/0.281 | 0.644/0.641 | 0.196/0.195 | 0.358/0.368 | 0.210/0.225 | 0.489/0.491 | 0.359/0.365 |0.359/0.367|
| InstructBLIP (Flan-T5-XL) | 0.334/0.362 | 0.582/0.599 | 0.248/0.267 | 0.113/0.113 | 0.167/0.188 | 0.378/0.400 | 0.211/0.179 |0.290/0.301|
| InstructBLIP (Vicuna-7B) | 0.359/0.437 | 0.683/0.689 | 0.200/0.283 | 0.253/0.367 | 0.263/0.304 | 0.629/0.663 | 0.337/0.382 |0.389/0.446|
| VisualGLM-6B (GLM-6B) | 0.247/0.234 | 0.498/0.507 | 0.146/0.154 | 0.110/0.116 | 0.209/0.183 | 0.342/0.349 | 0.127/0.131 |0.240/0.239|
| mPLUG-Owl (LLaMA-7B) | 0.409/0.427 | 0.634/0.644 | 0.241/0.271 | 0.437/0.487 | 0.148/0.180 | 0.687/0.711 | 0.466/0.486 |0.432/0.458|
| LLaMA-Adapter-V2 | 0.354/0.363 | 0.464/0.506 | 0.275/0.329 | 0.298/0.360 | 0.257/0.271 | 0.604/0.666 | 0.412/0.425 |0.381/0.417|
| LLaVA-v1 (Vicuna-13B) | 0.462/0.457 | 0.442/0.462 | 0.264/0.280 | 0.404/0.417 | 0.208/0.237 | 0.626/0.684 | 0.349/0.372 |0.394/0.416|
| MiniGPT-4 (Vicuna-13B) | 0.239/0.257 | 0.238/0.253 | 0.170/0.183 | 0.339/0.340 | 0.252/0.246 | 0.572/0.591 | 0.239/0.233 |0.293/0.300|

Overall, `internlm_xcomposer_vl` has the best IQA performance among the models. (30th Oct) with 6 champions among 7 datasets. `qwen-vl` and `llava-v1.5` are good runner-ups.

We release the results of these models (as well as the post-evaluation code) in [IQA_results](IQA_outputs/) for reference.
<gradio-app src="https://q-future-q-bench-leaderboard.hf.space"></gradio-app>


## Contact
Expand Down

0 comments on commit c76a3bf

Please sign in to comment.