Official Of our ACII 2022 paper:
Analysis of Semi-Supervised Methods for Facial Expression Recognition
Shuvendu Roy, Ali Etemad
In Proceedings of the IEEE International Conference on Affective Computing and Intelligent Interaction (ACII), 2022
We used the following dataset
Once the dataset is downloaded use the scripts in datasets/preprocessing
to preprocess the dataset.
The porcessed dataset structure should look like this:
dataset
├── train
│ ├── class_001
| | ├── 1.jpg
| | ├── 2.jpg
| | └── ...
│ ├── class_002
| | ├── 1.jpg
| | ├── 2.jpg
| | └── ...
│ └── ...
└── val
├── class_001
| ├── 1.jpg
| ├── 2.jpg
| └── ...
├── class_002
| ├── 1.jpg
| ├── 2.jpg
| └── ...
└── ...
Modify the config files in config/
directory if needed.
python [ALGO_NAME].py --c [CONFIG_FILE]
The semi-supervised algorithm implementations are followed from the following repository: TorchSSL. We thank the authors for releasing their code. If you use our model and code, please consider citing these works as well.
Please cite our paper if you this code repo in your work.
@inproceedings{roy2022analysis,
title={Analysis of Semi-Supervised Methods for Facial Expression Recognition},
author={Roy, Shuvendu and Etemad, Ali},
booktitle={2022 10th International Conference on Affective Computing and Intelligent Interaction (ACII)},
pages={1--8},
year={2022},
organization={IEEE}
}
Thanks for your attention! If you have any suggestion or question, you can leave a message here or contact us directly: