Yuxuan Xue1 , Xianghui Xie1, 2, Riccardo Marin1, Gerard Pons-Moll1, 2
1Real Virtual Human Group @ University of Tübingen & Tübingen AI Center
2Max Planck Institute for Informatics, Saarland Informatics Campus
- [2024/12/9] Inference Code release.
- [2024/12/9] Gen-3Diffusion paper is available on Arxiv.
- 2D foundation models are powerful but output lacks 3D consistency!
- 3D generative models can reconstruct 3D representation but is poor in generalization!
- How to combine 2D foundation models with 3D generative models?:
- they are both diffusion-based generative models => Can be synchronized at each diffusion step
- 2D foundation model helps 3D generation => provides strong prior informations about 3D shape
- 3D representation guides 2D diffusion sampling => use rendered output from 3D reconstruction for reverse sampling, where 3D consistency is guaranteed
- We extend the joint 2D-3D diffusion idea on daily objects reconstruction
- We adopt relative camera system in Gen-3Diffusion, because the front-view of objects has ambiguity. Human have clear front-view, and we used absolute camera system in Human-3Diffusion.
Same Conda environment to Human-3Diffusion. Please skip if you already installed it.
# Conda environment
conda create -n gen3diffusion python=3.10
conda activate gen3diffusion
pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu121
pip install xformers==0.0.22.post4 --index-url https://download.pytorch.org/whl/cu121
# Gaussian Opacity Fields
git clone https://github.com/YuxuanSnow/gaussian-opacity-fields.git
cd gaussian-opacity-fields && pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn/ && cd ..
export CPATH=/usr/local/cuda-12.1/targets/x86_64-linux/include:$CPATH
# Dependencies
pip install -r requirements.txt
# TSDF Fusion (Mesh extraction) Dependencies
pip install --user numpy opencv-python scikit-image numba
pip install --user pycuda
pip install scipy==1.11
Our pretrained weight can be downloaded from huggingface.
mkdir checkpoints_obj && cd checkpoints_obj
wget https://huggingface.co/yuxuanx/gen3diffusion/resolve/main/model.safetensors
wget https://huggingface.co/yuxuanx/gen3diffusion/resolve/main/model_1.safetensors
wget https://huggingface.co/yuxuanx/gen3diffusion/resolve/main/pifuhd.pt
cd ..
The avatar reconstruction module is same to Human-3Diffusion. Please skip if you already installed Human-3Diffusion.
mkdir checkpoints_avatar && cd checkpoints_avatar
wget https://huggingface.co/yuxuanx/human3diffusion/resolve/main/model.safetensors
wget https://huggingface.co/yuxuanx/human3diffusion/resolve/main/model_1.safetensors
wget https://huggingface.co/yuxuanx/human3diffusion/resolve/main/pifuhd.pt
cd ..
# given one image of object, generate 3D-GS object
# subject should be centered in a square image, please crop properly
# recenter plays a huge role in object reconstruction. Please adjust the recentering if the reconstruction doesn't work well
python infer.py --test_imgs test_imgs_obj --output output_obj --checkpoints checkpoints_obj
# given generated 3D-GS, perform TSDF mesh extraction
python infer_mesh.py --test_imgs test_imgs_obj --output output_obj --checkpoints checkpoints_obj --mesh_quality high
# given one image of human, generate 3D-GS avatar
# subject should be centered in a square image, please crop properly
python infer.py --test_imgs test_imgs_avatar --output output_avatar --checkpoints checkpoints_avatar
# given generated 3D-GS, perform TSDF mesh extraction
python infer_mesh.py --test_imgs test_imgs_avatar --output output_avatar --checkpoints checkpoints_avatar --mesh_quality high
@inproceedings{xue2024gen3diffusion,
title = {{Gen-3Diffusion: Realistic Image-to-3D Generation via 2D & 3D Diffusion Synergy }},
author = {Xue, Yuxuan and Xie, Xianghui and Marin, Riccardo and Pons-Moll, Gerard.},
journal = {Arxiv},
year = {2024},
}
@inproceedings{xue2024human3diffusion,
title = {{Human 3Diffusion: Realistic Avatar Creation via Explicit 3D Consistent Diffusion Models}},
author = {Xue, Yuxuan and Xie, Xianghui and Marin, Riccardo and Pons-Moll, Gerard.},
journal = {NeurIPS 2024},
year = {2024},
}