-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit cf73101
Showing
20 changed files
with
3,670 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
# rlfuzz | ||
|
||
Inspired by [rlfuzz](https://github.com/spolu/rlfuzz) | ||
|
||
## Installation | ||
|
||
```sh | ||
# tested in Ubuntu 16.04.6 | ||
# for LAVA-M | ||
sudo apt install libacl1 libacl1-dev | ||
|
||
# for AFL | ||
sudo sh -c "echo core > /proc/sys/kernel/core_pattern" | ||
|
||
for i in `ls /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor` ; do sudo sh -c "echo performance > $i"; done | ||
|
||
# install rlfuzz, testeded in Python 3.8.5 | ||
pip install . | ||
|
||
# open main.ipynb in ./examples with jupyter, it's a simple test for DDPGAgent | ||
``` | ||
|
||
## Add New Environments | ||
|
||
* modify `rlfuzz/setup.py` to add new target binary in `package_data`. | ||
* modify `rlfuzz/rlfuzz/__init__.py` to register new envs. | ||
* modify `rlfuzz/rlfuzz/envs/__init__.py` to import new env class defined in `rlfuzz/rlfuzz/envs/fuzz_lava_m_env.py`. | ||
* modify `rlfuzz/rlfuzz/mods/Makefile` to generate new target binary in `rlfuzz/rlfuzz/mods/lava-m-mod/`. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
.ipynb_checkpoints |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,242 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import warnings\n", | ||
"warnings.filterwarnings('ignore',category=FutureWarning)\n", | ||
"\n", | ||
"import numpy as np\n", | ||
"import gym\n", | ||
"import sys\n", | ||
"from tqdm import tqdm\n", | ||
"import time\n", | ||
"\n", | ||
"# pip install .\n", | ||
"import rlfuzz as rf\n", | ||
"\n", | ||
"# pip install tensorflow\n", | ||
"from tensorflow.keras.models import Sequential, Model\n", | ||
"from tensorflow.keras.layers import Dense, Activation, Flatten, Input, Concatenate\n", | ||
"from tensorflow.keras.optimizers import Adam\n", | ||
"\n", | ||
"# pip install keras-rl2\n", | ||
"from rl.agents import DDPGAgent\n", | ||
"from rl.memory import SequentialMemory\n", | ||
"from rl.random import OrnsteinUhlenbeckProcess" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"ENV_NAME = 'FuzzBase64-v0'\n", | ||
"env = gym.make(ENV_NAME)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"env.setDiscreteEnv()\n", | ||
"print(env.action_space.n)\n", | ||
"print(env.observation_space.shape)\n", | ||
"nb_actions = env.action_space.n\n", | ||
"nb_observation = env.observation_space.shape[0]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"actor_input = Input(shape=(1,) + env.observation_space.shape, name='actor_observation_input')\n", | ||
"f_actor_input = Flatten()(actor_input)\n", | ||
"x = Dense(1024, activation='relu')(f_actor_input)\n", | ||
"x = Dense(64, activation='relu')(x)\n", | ||
"y = Dense(nb_actions, activation='tanh')(x)\n", | ||
"actor = Model(inputs=actor_input, outputs=y, name='Actor')\n", | ||
"actor.summary()\n", | ||
"\n", | ||
"critic_action_input = Input(shape=(env.action_space.n), name='critic_action_input')\n", | ||
"critic_observation_input = Input(shape=(1,) + env.observation_space.shape, name='critic_observation_input')\n", | ||
"f_critic_observation_input = Flatten()(critic_observation_input)\n", | ||
"x = Concatenate()([critic_action_input, f_critic_observation_input])\n", | ||
"x = Dense(1024, activation='relu')(x)\n", | ||
"x = Dense(64, activation='relu')(x)\n", | ||
"y = Dense(1, activation='sigmoid')(x)\n", | ||
"critic = Model(inputs=[critic_action_input, critic_observation_input], outputs=y, name='Critic')\n", | ||
"critic.summary()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"agent = DDPGAgent(nb_actions=nb_actions, \n", | ||
" actor=actor, \n", | ||
" critic=critic, \n", | ||
" critic_action_input=critic_action_input, \n", | ||
" memory=SequentialMemory(limit=100000, window_length=1), \n", | ||
" nb_steps_warmup_critic=2000, \n", | ||
" nb_steps_warmup_actor=2000, \n", | ||
" random_process=OrnsteinUhlenbeckProcess(size=nb_actions, theta=.15, mu=0., sigma=.3), \n", | ||
" gamma=.99, \n", | ||
" target_model_update=1e-3\n", | ||
" )\n", | ||
"agent.compile(Adam(lr=.001, clipnorm=1.), metrics=['mae'])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"history = agent.fit(env, nb_steps=5000, visualize=False, verbose=1) # 执行nb_steps步,nb_max_episode_steps步后将done=True\n", | ||
"\n", | ||
"# import pandas as pd\n", | ||
"# pd.DataFrame(history.history).to_csv('../logs/rl_ddpg_{}_history.csv'.format(ENV_NAME))\n", | ||
"# agent.save_weights('../model/ddpg_{}_weights.h5f'.format(ENV_NAME), overwrite=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import matplotlib.pyplot as plt\n", | ||
"import seaborn as sns\n", | ||
"sns.set()\n", | ||
"\n", | ||
"def show_graghs(env, history):\n", | ||
" data = env.input_len_history\n", | ||
" plt.figure(figsize=(20,8))\n", | ||
"\n", | ||
" plt.subplot(221)\n", | ||
" plt.plot(data, marker='o', markersize=2, linewidth=1)\n", | ||
" plt.xlabel('step')\n", | ||
" plt.ylabel('length')\n", | ||
"\n", | ||
" plt.axhline(y=max(data), color='r', linewidth=1, linestyle='--')\n", | ||
" plt.text(0, max(data), str(max(data)), fontdict={'size': 8, 'color': 'r'})\n", | ||
" if len(history) > 0:\n", | ||
" for n in history['nb_steps']:\n", | ||
" plt.axvline(x=n, color='r', linewidth=1, linestyle='--')\n", | ||
" plt.text(n, 0, str(n), fontdict={'size': 8, 'color': 'r'})\n", | ||
"\n", | ||
" data = env.transition_count\n", | ||
" plt.subplot(222)\n", | ||
" plt.plot(data, marker='o', markersize=2, linewidth=1)\n", | ||
" plt.xlabel('step')\n", | ||
" plt.ylabel('transition_count')\n", | ||
" plt.axhline(y=max(data), color='r', linewidth=1, linestyle='--')\n", | ||
" plt.text(0, max(data), str(max(data)), fontdict={'size': 8, 'color': 'r'})\n", | ||
" plt.axhline(y=min(data), color='r', linewidth=1, linestyle='--')\n", | ||
" plt.text(0, min(data), str(min(data)), fontdict={'size': 8, 'color': 'r'})\n", | ||
" if len(history) > 0:\n", | ||
" for n in history['nb_steps']:\n", | ||
" plt.axvline(x=n, color='r', linewidth=1, linestyle='--')\n", | ||
" print('[+] Avg of last 1000 steps: {}'.format(sum(data[-1000:])/1000))\n", | ||
"\n", | ||
" data = env.reward_history\n", | ||
" plt.subplot(224)\n", | ||
" plt.plot(data, linewidth=1)\n", | ||
" plt.xlabel('step')\n", | ||
" plt.ylabel('reward_history')\n", | ||
" plt.axhline(y=max(data), color='r', linewidth=1, linestyle='--')\n", | ||
" plt.text(0, max(data), str(max(data)), fontdict={'size': 8, 'color': 'r'})\n", | ||
" plt.axhline(y=min(data), color='r', linewidth=1, linestyle='--')\n", | ||
" plt.text(0, min(data), str(min(data)), fontdict={'size': 8, 'color': 'r'})\n", | ||
"\n", | ||
" from collections import Counter\n", | ||
" data = env.mutate_history\n", | ||
" ct = Counter(data)\n", | ||
" plt.subplot(223)\n", | ||
" plt.barh(list(ct.keys()), [ ct[k] for k in ct.keys() ])\n", | ||
" plt.yticks(range(env.mutate_size), \n", | ||
" ['EraseBytes', 'InsertByte', 'InsertRepeatedBytes', 'ChangeByte', 'ChangeBit', \n", | ||
" 'ShuffleBytes', 'ChangeASCIIInteger', 'ChangeBinaryInteger', 'CopyPart'])\n", | ||
" plt.xlabel('step')\n", | ||
" # plt.ylabel('action')\n", | ||
"\n", | ||
"# plt.savefig('../logs/rl_ddpg_{}.png'.format(ENV_NAME))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"show_graghs(env, history.history)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# 加载训练模型\n", | ||
"newAgent = DDPGAgent(nb_actions=nb_actions, \n", | ||
" actor=actor, \n", | ||
" critic=critic, \n", | ||
" critic_action_input=critic_action_input, \n", | ||
" memory=SequentialMemory(limit=100000, window_length=1), \n", | ||
" nb_steps_warmup_critic=2000, \n", | ||
" nb_steps_warmup_actor=2000, \n", | ||
" random_process=OrnsteinUhlenbeckProcess(size=nb_actions, theta=.15, mu=0., sigma=.3), \n", | ||
" gamma=.99, \n", | ||
" target_model_update=1e-3\n", | ||
" )\n", | ||
"newAgent.compile(Adam(lr=.001, clipnorm=1.), metrics=['mae'])\n", | ||
"newAgent.load_weights('../model/ddpg_{}_weights.h5f'.format(ENV_NAME))\n", | ||
"\n", | ||
"newEnv = gym.make(ENV_NAME)\n", | ||
"start = time.time()\n", | ||
"newHistory = newAgent.test(newEnv, visualize=False, nb_max_episode_steps=5000)\n", | ||
"end = time.time()\n", | ||
"print('[+] {} min(s)'.format((end - start) / 60))" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "RLFuzz", | ||
"language": "python", | ||
"name": "rlfuzz" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.5" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
__pycache__ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
import os | ||
|
||
from gym.envs.registration import register | ||
|
||
def afl_forkserver_path(): | ||
package_directory = os.path.dirname(os.path.abspath(__file__)) | ||
return os.path.join( | ||
package_directory, 'mods/afl-2.52b-mod/afl-2.52b/afl-forkserver', | ||
) | ||
|
||
# base64_afl | ||
def base64_target_path(): | ||
package_directory = os.path.dirname(os.path.abspath(__file__)) | ||
return os.path.join( | ||
package_directory, 'mods/lava-m-mod/base64_afl', | ||
) | ||
|
||
register( | ||
id='FuzzBase64-v0', | ||
entry_point='rlfuzz.envs:FuzzBase64Env', | ||
) | ||
|
||
# md5sum_afl | ||
def md5sum_target_path(): | ||
package_directory = os.path.dirname(os.path.abspath(__file__)) | ||
return os.path.join( | ||
package_directory, 'mods/lava-m-mod/md5sum_afl', | ||
) | ||
|
||
register( | ||
id='FuzzMd5sum-v0', | ||
entry_point='rlfuzz.envs:FuzzMd5sumEnv', | ||
) | ||
|
||
# uniq_afl | ||
def uniq_target_path(): | ||
package_directory = os.path.dirname(os.path.abspath(__file__)) | ||
return os.path.join( | ||
package_directory, 'mods/lava-m-mod/uniq_afl', | ||
) | ||
|
||
register( | ||
id='FuzzUniq-v0', | ||
entry_point='rlfuzz.envs:FuzzUniqEnv', | ||
) | ||
|
||
# who_afl | ||
def who_target_path(): | ||
package_directory = os.path.dirname(os.path.abspath(__file__)) | ||
return os.path.join( | ||
package_directory, 'mods/lava-m-mod/who_afl', | ||
) | ||
|
||
register( | ||
id='FuzzWho-v0', | ||
entry_point='rlfuzz.envs:FuzzWhoEnv', | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
from rlfuzz.coverage.coverage import Coverage | ||
from rlfuzz.coverage.coverage import Afl | ||
from rlfuzz.coverage.coverage import PATH_MAP_SIZE | ||
from rlfuzz.coverage.forkclient import ForkClient |
Oops, something went wrong.