-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRLKAN_arch.py
473 lines (353 loc) · 15.7 KB
/
RLKAN_arch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# -*- coding: utf-8 -*-
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from basicsr.utils.registry import ARCH_REGISTRY
#LKA from VAN (https://github.com/Visual-Attention-Network)
class LKA(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv0 = nn.Conv2d(dim, dim, 7, padding=7//2, groups=dim)
self.conv_spatial = nn.Conv2d(dim, dim, 9, stride=1, padding=((9//2)*4), groups=dim, dilation=4)
self.conv1 = nn.Conv2d(dim, dim, 1)
def forward(self, x):
u = x.clone()
attn = self.conv0(x)
attn = self.conv_spatial(attn)
attn = self.conv1(attn)
return u * attn
class Attention(nn.Module):
def __init__(self, n_feats):
super().__init__()
self.norm = LayerNorm(n_feats, data_format='channels_first')
self.scale = nn.Parameter(torch.zeros((1, n_feats, 1, 1)), requires_grad=True)
self.proj_1 = nn.Conv2d(n_feats, n_feats, 1)
self.spatial_gating_unit = LKA(n_feats)
self.proj_2 = nn.Conv2d(n_feats, n_feats, 1)
def forward(self, x):
shorcut = x.clone()
x = self.proj_1(self.norm(x))
x = self.spatial_gating_unit(x)
x = self.proj_2(x)
x = x*self.scale + shorcut
return x
#----------------------------------------------------------------------------------------------------------------
class MLP(nn.Module):
def __init__(self, n_feats):
super().__init__()
self.norm = LayerNorm(n_feats, data_format='channels_first')
self.scale = nn.Parameter(torch.zeros((1, n_feats, 1, 1)), requires_grad=True)
i_feats = 2*n_feats
self.fc1 = nn.Conv2d(n_feats, i_feats, 1, 1, 0)
self.act = nn.GELU()
self.fc2 = nn.Conv2d(i_feats, n_feats, 1, 1, 0)
def forward(self, x):
shortcut = x.clone()
x = self.norm(x)
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x*self.scale + shortcut
class CFF(nn.Module):
def __init__(self, n_feats, drop=0.0, k=2, squeeze_factor= 15, attn ='GLKA'):
super().__init__()
i_feats =n_feats*2
self.Conv1 = nn.Conv2d(n_feats, i_feats, 1, 1, 0)
self.DWConv1 = nn.Sequential(
nn.Conv2d(i_feats, i_feats, 7, 1, 7//2, groups= n_feats),
nn.GELU())
self.Conv2 = nn.Conv2d(i_feats, n_feats, 1, 1, 0)
self.norm = LayerNorm(n_feats, data_format='channels_first')
self.scale = nn.Parameter(torch.zeros((1, n_feats, 1, 1)), requires_grad=True)
def forward(self, x):
shortcut = x.clone()
#Ghost Expand
x = self.Conv1(self.norm(x))
x = self.DWConv1(x)
x = self.Conv2(x)
return x*self.scale + shortcut
class SimpleGate(nn.Module):
def __init__(self, n_feats):
super().__init__()
i_feats =n_feats*2
self.Conv1 = nn.Conv2d(n_feats, i_feats, 1, 1, 0)
#self.DWConv1 = nn.Conv2d(n_feats, n_feats, 7, 1, 7//2, groups= n_feats)
self.Conv2 = nn.Conv2d(n_feats, n_feats, 1, 1, 0)
self.norm = LayerNorm(n_feats, data_format='channels_first')
self.scale = nn.Parameter(torch.zeros((1, n_feats, 1, 1)), requires_grad=True)
def forward(self, x):
shortcut = x.clone()
#Ghost Expand
x = self.Conv1(self.norm(x))
a, x = torch.chunk(x, 2, dim=1)
x = x*a #self.DWConv1(a)
x = self.Conv2(x)
return x*self.scale + shortcut
#-----------------------------------------------------------------------------------------------------------------
#RCAN-style
class RCBv6(nn.Module):
def __init__(
self, n_feats, k, lk=7, res_scale=1.0, style ='X', act = nn.SiLU(), deploy=False):
super().__init__()
self.LKA = nn.Sequential(
nn.Conv2d(n_feats, n_feats, 5, 1, lk//2, groups= n_feats),
nn.Conv2d(n_feats, n_feats, 7, stride=1, padding=9, groups=n_feats, dilation=3),
nn.Conv2d(n_feats, n_feats, 1, 1, 0),
nn.Sigmoid())
#self.LFE2 = LFEv3(n_feats, attn ='CA')
self.LFE = nn.Sequential(
nn.Conv2d(n_feats,n_feats,3,1,1),
nn.GELU(),
nn.Conv2d(n_feats,n_feats,3,1,1))
def forward(self, x, pre_attn=None, RAA=None):
shortcut = x.clone()
x = self.LFE(x)
x = self.LKA(x)*x
return x + shortcut
#-----------------------------------------------------------------------------------------------------------------
class MLKA_Ablation(nn.Module):
def __init__(self, n_feats, k=2, squeeze_factor=15):
super().__init__()
i_feats = 2*n_feats
self.n_feats= n_feats
self.i_feats = i_feats
self.norm = LayerNorm(n_feats, data_format='channels_first')
self.scale = nn.Parameter(torch.zeros((1, n_feats, 1, 1)), requires_grad=True)
k = 2
#Multiscale Large Kernel Attention
self.LKA7 = nn.Sequential(
nn.Conv2d(n_feats//k, n_feats//k, 7, 1, 7//2, groups= n_feats//k),
nn.Conv2d(n_feats//k, n_feats//k, 9, stride=1, padding=(9//2)*4, groups=n_feats//k, dilation=4),
nn.Conv2d(n_feats//k, n_feats//k, 1, 1, 0))
self.LKA5 = nn.Sequential(
nn.Conv2d(n_feats//k, n_feats//k, 5, 1, 5//2, groups= n_feats//k),
nn.Conv2d(n_feats//k, n_feats//k, 7, stride=1, padding=(7//2)*3, groups=n_feats//k, dilation=3),
nn.Conv2d(n_feats//k, n_feats//k, 1, 1, 0))
'''self.LKA3 = nn.Sequential(
nn.Conv2d(n_feats//k, n_feats//k, 3, 1, 1, groups= n_feats//k),
nn.Conv2d(n_feats//k, n_feats//k, 5, stride=1, padding=(5//2)*2, groups=n_feats//k, dilation=2),
nn.Conv2d(n_feats//k, n_feats//k, 1, 1, 0))'''
#self.X3 = nn.Conv2d(n_feats//k, n_feats//k, 3, 1, 1, groups= n_feats//k)
self.X5 = nn.Conv2d(n_feats//k, n_feats//k, 5, 1, 5//2, groups= n_feats//k)
self.X7 = nn.Conv2d(n_feats//k, n_feats//k, 7, 1, 7//2, groups= n_feats//k)
self.proj_first = nn.Sequential(
nn.Conv2d(n_feats, i_feats, 1, 1, 0))
self.proj_last = nn.Sequential(
nn.Conv2d(n_feats, n_feats, 1, 1, 0))
def forward(self, x, pre_attn=None, RAA=None):
shortcut = x.clone()
x = self.norm(x)
x = self.proj_first(x)
a, x = torch.chunk(x, 2, dim=1)
#u_1, u_2, u_3= torch.chunk(u, 3, dim=1)
a_1, a_2 = torch.chunk(a, 2, dim=1)
a = torch.cat([self.LKA7(a_1)*self.X7(a_1), self.LKA5(a_2)*self.X5(a_2)], dim=1)
x = self.proj_last(x*a)*self.scale + shortcut
return x
#-----------------------------------------------------------------------------------------------------------------
class LayerNorm(nn.Module):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class SGAB(nn.Module):
def __init__(self, n_feats, drop=0.0, k=2, squeeze_factor= 15, attn ='GLKA'):
super().__init__()
i_feats =n_feats*2
self.Conv1 = nn.Conv2d(n_feats, i_feats, 1, 1, 0)
self.DWConv1 = nn.Conv2d(n_feats, n_feats, 7, 1, 7//2, groups= n_feats)
self.Conv2 = nn.Conv2d(n_feats, n_feats, 1, 1, 0)
self.norm = LayerNorm(n_feats, data_format='channels_first')
self.scale = nn.Parameter(torch.zeros((1, n_feats, 1, 1)), requires_grad=True)
def forward(self, x):
shortcut = x.clone()
#Ghost Expand
x = self.Conv1(self.norm(x))
a, x = torch.chunk(x, 2, dim=1)
x = x*self.DWConv1(a)
x = self.Conv2(x)
return x*self.scale + shortcut
class GroupGLKA(nn.Module):
def __init__(self, n_feats, k=2, squeeze_factor=15):
super().__init__()
i_feats = 2*n_feats
self.n_feats= n_feats
self.i_feats = i_feats
self.norm = LayerNorm(n_feats, data_format='channels_first')
self.scale = nn.Parameter(torch.zeros((1, n_feats, 1, 1)), requires_grad=True)
#Multiscale Large Kernel Attention
self.LKA7 = nn.Sequential(
nn.Conv2d(n_feats//3, n_feats//3, 7, 1, 7//2, groups= n_feats//3),
nn.Conv2d(n_feats//3, n_feats//3, 9, stride=1, padding=(9//2)*4, groups=n_feats//3, dilation=4),
nn.Conv2d(n_feats//3, n_feats//3, 1, 1, 0))
self.LKA5 = nn.Sequential(
nn.Conv2d(n_feats//3, n_feats//3, 5, 1, 5//2, groups= n_feats//3),
nn.Conv2d(n_feats//3, n_feats//3, 7, stride=1, padding=(7//2)*3, groups=n_feats//3, dilation=3),
nn.Conv2d(n_feats//3, n_feats//3, 1, 1, 0))
self.LKA3 = nn.Sequential(
nn.Conv2d(n_feats//3, n_feats//3, 3, 1, 1, groups= n_feats//3),
nn.Conv2d(n_feats//3, n_feats//3, 5, stride=1, padding=(5//2)*2, groups=n_feats//3, dilation=2),
nn.Conv2d(n_feats//3, n_feats//3, 1, 1, 0))
self.X3 = nn.Conv2d(n_feats//3, n_feats//3, 3, 1, 1, groups= n_feats//3)
self.X5 = nn.Conv2d(n_feats//3, n_feats//3, 5, 1, 5//2, groups= n_feats//3)
self.X7 = nn.Conv2d(n_feats//3, n_feats//3, 7, 1, 7//2, groups= n_feats//3)
self.proj_first = nn.Sequential(
nn.Conv2d(n_feats, i_feats, 1, 1, 0))
self.proj_last = nn.Sequential(
nn.Conv2d(n_feats, n_feats, 1, 1, 0))
def forward(self, x, pre_attn=None, RAA=None):
shortcut = x.clone()
x = self.norm(x)
x = self.proj_first(x)
a, x = torch.chunk(x, 2, dim=1)
a_1, a_2, a_3= torch.chunk(a, 3, dim=1)
a = torch.cat([self.LKA3(a_1)*self.X3(a_1), self.LKA5(a_2)*self.X5(a_2), self.LKA7(a_3)*self.X7(a_3)], dim=1)
x = self.proj_last(x*a)*self.scale + shortcut
return x
# MAB
class MAB(nn.Module):
def __init__(
self, n_feats):
super().__init__()
self.LKA = GroupGLKA(n_feats)
self.LFE = SGAB(n_feats)
def forward(self, x, pre_attn=None, RAA=None):
#large kernel attention
x = self.LKA(x)
#local feature extraction
x = self.LFE(x)
return x
class LKAT(nn.Module):
def __init__(self, n_feats):
super().__init__()
#self.norm = LayerNorm(n_feats, data_format='channels_first')
#self.scale = nn.Parameter(torch.zeros((1, n_feats, 1, 1)), requires_grad=True)
self.conv0 = nn.Sequential(
nn.Conv2d(n_feats, n_feats, 1, 1, 0),
nn.GELU())
self.att = nn.Sequential(
nn.Conv2d(n_feats, n_feats, 7, 1, 7//2, groups= n_feats),
nn.Conv2d(n_feats, n_feats, 9, stride=1, padding=(9//2)*3, groups=n_feats, dilation=3),
nn.Conv2d(n_feats, n_feats, 1, 1, 0))
self.conv1 = nn.Conv2d(n_feats, n_feats, 1, 1, 0)
def forward(self, x):
x = self.conv0(x)
x = x*self.att(x)
x = self.conv1(x)
return x
class ResGroup(nn.Module):
def __init__(self, n_resblocks, n_feats, res_scale=1.0):
super(ResGroup, self).__init__()
self.body = nn.ModuleList([
MAB(n_feats) \
for _ in range(n_resblocks)])
self.body_t = LKAT(n_feats)
def forward(self, x):
res = x.clone()
for i, block in enumerate(self.body):
res = block(res)
x = self.body_t(res) + x
return x
class MeanShift(nn.Conv2d):
def __init__(
self, rgb_range,
rgb_mean=(0.33, 0.0, 0.0), rgb_std=(1.0, 1.0, 1.0), sign=-1):
super(MeanShift, self).__init__(3, 3, kernel_size=1)
std = torch.Tensor(rgb_std)
self.weight.data = torch.eye(3).view(3, 3, 1, 1) / std.view(3, 1, 1, 1)
self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean) / std
for p in self.parameters():
p.requires_grad = False
@ARCH_REGISTRY.register()
class RLKAN(nn.Module):
def __init__(self, n_resblocks=4, RLS_stage = 4, n_resgroups=1, n_colors=3, n_feats=180, scale=2, res_scale = 1.0, bit = 8):
super(RLKAN, self).__init__()
#res_scale = res_scale
self.n_resgroups = n_resgroups
self.Stage = RLS_stage
self.sub_mean = MeanShift(1.0)
if bit == 8:
self.head = nn.Conv2d(1, n_feats, 3, 1, 1)
else:
self.head = nn.Conv2d(n_colors, n_feats, 3, 1, 1)
# define body module
self.body = nn.ModuleList([
ResGroup(
n_resblocks, n_feats, res_scale=res_scale)
for i in range(n_resgroups)])
self.body_t = nn.Conv2d(n_feats, n_feats, 3, 1, 1)
# define tail module
self.tail = nn.Sequential(
nn.Conv2d(n_feats, n_colors*(scale**2), 3, 1, 1),
nn.PixelShuffle(scale)
)
self.add_mean = MeanShift(1.0, sign=1)
def forward(self, x):
x = self.sub_mean(x)
x = self.head(x)
res = x
for stage in range(self.Stage):
for i in self.body:
res = i(res)
if stage < self.Stage - 1:
res = x + self.body_t(res)
# if self.n_resgroups>1:
# res = self.body_t(res) + x
x = self.tail(res)
x = self.add_mean(x)
return x
def visual_feature(self, x):
fea = []
x = self.head(x)
res = x
for i in self.body:
temp = res
res = i(res)
fea.append(res)
res = self.body_t(res) + x
x = self.tail(res)
return x, fea
def load_state_dict(self, state_dict, strict=False):
own_state = self.state_dict()
for name, param in state_dict.items():
if name in own_state:
if isinstance(param, nn.Parameter):
param = param.data
try:
own_state[name].copy_(param)
except Exception:
if name.find('tail') >= 0:
print('Replace pre-trained upsampler to new one...')
else:
raise RuntimeError('While copying the parameter named {}, '
'whose dimensions in the model are {} and '
'whose dimensions in the checkpoint are {}.'
.format(name, own_state[name].size(), param.size()))
elif strict:
if name.find('tail') == -1:
raise KeyError('unexpected key "{}" in state_dict'
.format(name))
if strict:
missing = set(own_state.keys()) - set(state_dict.keys())
if len(missing) > 0:
raise KeyError('missing keys in state_dict: "{}"'.format(missing))