-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_rlkan_llvip_x2_r.yml
113 lines (98 loc) · 2.15 KB
/
train_rlkan_llvip_x2_r.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
name: RLKAN_SR_LLVIP_x2_r
model_type: SRModel
scale: 2 # 2/3/4/8
num_gpu: 8
manual_seed: 10
datasets:
train:
name: LLVIP
type: PairedImageDataset
dataroot_gt: datasets/RLKA-NET/data/LLVIP/train_gt
dataroot_lq: datasets/RLKA-NET/data/LLVIP/train_lrx2
# (for lmdb)
# dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub.lmdb
# dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic_X4_sub.lmdb
filename_tmpl: '{}'
io_backend:
type: disk
# (for lmdb)
# type: lmdb
gt_size: 32
use_hflip: true
use_rot: true
# data loader
num_worker_per_gpu: 6
batch_size_per_gpu: 16
dataset_enlarge_ratio: 100
prefetch_mode: ~
val:
name: LLVIP
type: PairedImageDataset
dataroot_gt: datasets/RLKA-NET/data/LLVIP/val_gt
dataroot_lq: datasets/RLKA-NET/data/LLVIP/val_lrx2
io_backend:
type: disk
# network structures
network_g:
type: RLKAN
scale: 2 #or 3/4
n_resblocks: 5 #
n_resgroups: 1
n_feats: 180 #
bit: 24
# path
path:
pretrain_network_g: ~
strict_load_g: true
resume_state: ~
# training settings
train:
ema_decay: 0.999
optim_g:
type: Adam
lr: !!float 5e-4
weight_decay: 0
betas: [0.9, 0.99]
scheduler:
type: MultiStepLR
milestones: [800000, 1200000, 140000, 1500000]
gamma: 0.5
#type: CosineAnnealingRestartLR
#periods: [1600000]
#restart_weights: [1]
#eta_min: !!float 1e-7
total_iter: 100000
warmup_iter: -1 # no warm up
# losses
pixel_opt:
type: L1Loss
loss_weight: 1.0
reduction: mean
# validation settings
val:
val_freq: !!float 1e2
save_img: true
pbar: False
metrics:
psnr:
type: calculate_psnr
crop_border: 2 # 2/3/4
test_y_channel: true
better: higher # the higher, the better. Default: higher
ssim:
type: calculate_ssim
crop_border: 2 # 2/3/4
test_y_channel: true
better: higher # the higher, the better. Default: higher
# logging settings
logger:
print_freq: 10
save_checkpoint_freq: !!float 2e3
use_tb_logger: true
wandb:
project: ~
resume_id: ~
# dist training settings
dist_params:
backend: nccl
port: 29500