CBiGAN: a combined model that generalizes Bidirectional GANs (BiGANs) and AutoEncoders, applied to anomaly detection in images. The repo provides training and evaluation code for the MVTecAD anomaly detection benchmark.
Also provides a TensorFlow2 implementation of BiGAN following the Wasserstein GAN (WGAN) formulation.
You need:
- Python 3
- Tensorflow 2.4.0
- packages in requirements.txt
You can use the Dockerfile to build an image.
Download the whole MVTec-AD dataset and extract into data/mvtec-ad
.
Check out the train.py
script for training parameters:
python train.py -h
Combining GANs and AutoEncoders for Efficient Anomaly Detection [arXiv] Fabio Carrara, Giuseppe Amato, Luca Brombin, Fabrizio Falchi, Claudio Gennaro
@article{carrara2020combining,
title={Combining GANs and AutoEncoders for Efficient Anomaly Detection},
author={Carrara, Fabio and Amato, Giuseppe and Brombin, Luca and Falchi, Fabrizio and Gennaro, Claudio},
journal={arXiv preprint arXiv:2011.08102},
year={2020}
}