Skip to content

Julia codebase to compute irreps of the unitary group U(d)

License

Notifications You must be signed in to change notification settings

davidamaro/GroupFunctions.jl

Repository files navigation

Build Status

GroupFunctions.jl

A Julia library to compute D-functions, which are entries of the irreducible representations of the unitary group U(d). These entries can be numeric or symbolic.

Installation

Julia is already installed

Alternatively, you can install the package directly from the repository:

user@machine:~$ mkdir new_code && cd new_code
user@machine:~$ julia --project=.
julia> ] add https://github.com/davidamaro/GroupFunctions.jl

Installing Julia

  • Mac: Use juliaup. Installing Julia via brew is not recommended.
  • Linux: Use the appropriate package manager (e.g., sudo pacman -S julia).
  • Windows: Run winget install julia -s msstore in your terminal and follow the steps.

Usage

julia> using RandomMatrices # You may be asked to install it. Just answer yes.
julia> using GroupFunctions
julia> my_fav_irrep = [2, 1, 0]
julia> my_fav_matrix = rand(Haar(2), 3)
julia> my_fav_basis = basis_states(my_fav_irrep)
julia> # Check out some cool Gelfand-Tsetlin patterns:
julia> my_fav_basis[1]
julia> my_fav_basis[3]
julia> group_function(my_fav_irrep, my_fav_basis[1], my_fav_basis[3], my_fav_matrix)
julia> # For a symbolic matrix, simply omit the matrix argument
julia> output = group_function(my_fav_irrep, my_fav_basis[1], my_fav_basis[3])
julia> # Translate the symbolic D-function for use in Mathematica
julia> julia_to_mma(output)

For more examples, see the "Tutorials" section in the documentation.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request. A to-do list is included in the todo.txt file.

License

Until the code from AbstractAlgebra.jl (to deal with Young tableaux) is removed from this package, the license will align with AbstractAlgebra.jl's.

References

  1. J Grabmeier and A Kerber, "The evaluation of irreducible polynomial representations of the general linear groups and of the unitary groups over fields of characteristic 0" Acta Appl. Math, 1987
  2. A Alex et al, "A numerical algorithm for the explicit calculation of SU(N) and SL(N, C) Clebsch–Gordan coefficients" J. Math. Phys. 2011
  3. D Amaro-Alcala et al "Sum rules in multiphoton coincidence rates" Phys. Lett. A 2020
  4. AbstractAlgebra.jl

Citation

Pending.

build Documentation Documentation

About

Julia codebase to compute irreps of the unitary group U(d)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages