This repo is YOLOv5 om model inference program on the Huawei Ascend platform.
All programs passed the test on Huawei Atlas 300I
inference card (Ascend 310 AI CPU
, CANN 5.0.2
, npu-smi 21.0.2
).
You can run demo by python detect_yolov5_ascend.py
.
In addition to the Ascend environments with ATC tools, CANN(pyACL), and Python, you will need the following python packages.
opencv_python
Pillow
torch
torchvision
(1) Training your YOLOv5 model by ultralytics/yolov5. Then export the pytorch model to onnx format.
# in yolov5 root path, exporting pth model to onnx model.
python export.py --weights yolov5s.pt --opset 12 --simplify --include onnx
(2) On the Huawei Ascend platform, using the atc
tool convert the onnx model to om model.
# on Ascend 310 AI CPU, exporting onnx model to om model.
atc --input_shape="images:1,3,640,640" --input_format=NCHW --output="yolov5s" --soc_version=Ascend310 --framework=5 --model="yolov5s.onnx" --output_type=FP32
(1) Clone repo and move *.om model
to yolov5-ascend/ascend/*.om
.
git clone git@github.com:jackhanyuan/yolov5-ascend.git
mv yolov5s.om yolov5-ascend/ascend/
(2) Edit label file in yolov5-ascend/ascend/yolov5.label
.
(3) Run inference program.
python detect_yolov5_ascend.py
The result will save to img_out
folder.