RADtyping is a user-defined perl procedure for performing de novo RAD genotyping in mapping populations. It has three major features:
·Codominant and dominant genotyping
RAD sequencing can generate two types of markers (i.e. codominant or dominant), which differ by whether a SNP disrupts the recognition site or not. Most RAD studies only score codominant markers, while for dominant markers, they are still largely unexplored. RADtyping enables both codominant and dominant genotyping, thus maximizing the genotypic information for a given amount of sequencing.
·High level of genotyping accuracy
Reconstructing reference sites correctly from sequencing data is critical for accurate genotyping. RADtyping enables setting up high-quality representative reference sites by removing repetitive sites and sequencing errors efficiently, which, in combination with our optimized genotyping algorithms, contributes to a high level of genotyping accuracy.
·Convenience
For biologists who are not familiar with Linux or Perl programming, RADtyping pipeline allows you to finish the whole analysis by typing just one command line (under default parameters). In addition, RADtyping allows transforming genotyping results into a Joinmap format for construction of genetic maps.
Jinzhuang Dou, Xiaoteng Fu, Xiaoyu Mu, Shi Wang
Created time: Monday, September 03, 2012
Version: V1.30
Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
The following software need to be installed. Note, their most recent versions have not been tested.
Stacks (version 0.99997)[1] SOAP2 (version 2.1.1b)[2]
Velvet(version 1.1)[3]
Make sure that the Perl scripts listed below are available in your current working path, so you can call them directly from a single command line:
name_change.pl
reads_proc.pl
ref_build.pl
ref_filter.pl
reads_filter.pl
reads_map.pl
codom_calling.pl
dom_calling.pl
joinmap_trans.pl
RADtyping.pl
Example Usage
If all your input files are stored in a directory called “rawdata”, which contains Illumina sequencing data for two parents and twenty progenies:
mgb@M:~/djz/rawdata$ ls
Progeny_001.fastq Progeny_007.fastq Progeny_013.fastq Progeny_019.fastq
Progeny_002.fastq Progeny_008.fastq Progeny_014.fastq Progeny_020.fastq
Progeny_003.fastq Progeny_009.fastq Progeny_015.fastq Parent_001.fastq
Progeny_004.fastq Progeny_010.fastq Progeny_016.fastq Parent_002.fastq
Progeny_005.fastq Progeny_011.fastq Progeny_017.fastq
Progeny_006.fastq Progeny_012.fastq Progeny_018.fastq
The high-quality (HQ) reads can be obtained by running:
mgb@M:~/djz/$ perl reads_proc.pl -i rawdata -p1 rawdata/Parent_001.fastq -p2 rawdata/Parent_002.fastq -b [ATGC]{9}AC[ATGC]{5}CTCC[ATGC]{7} -l 27
The obtained HQ reads are stored in a directory named “proc_data”.
mgb@M:~/djz/proc_data$ ls
Progeny_001.fasta Progeny_007.fasta Progeny_013.fasta Progeny_019.fasta
Progeny_002.fasta Progeny_008.fasta Progeny_014.fasta Progeny_020.fasta
Progeny_003.fasta Progeny_009.fasta Progeny_015.fasta P1.fasta
Progeny_004.fasta Progeny_010.fasta Progeny_016.fasta P2.fasta
Progeny_005.fasta Progeny_011.fasta Progeny_017.fasta
Progeny_006.fasta Progeny_012.fasta Progeny_018.fasta
If your data are pair-end, it is necessary to pair the data together in the directory “proc_data”.
mgb@M:~/djz/proc_data$ ls
Progeny_001_p.fasta Progeny_007_p.fasta Progeny_013_p.fasta
Progeny_019_p.fasta Progeny_002_p.fasta Progeny_008_p.fasta
Progeny_014_p.fasta Progeny_020_p.fasta Progeny_003_p.fasta
Progeny_009_p.fasta Progeny_015_p.fasta Progeny_004_p.fasta
Progeny_010_p.fasta Progeny_016_p.fasta Progeny_005_p.fasta
Progeny_011_p.fasta Progeny_017_p.fasta Progeny_006_p.fasta
Progeny_012_p.fasta Progeny_018_p.fasta P1_p.fasta P2_p.fasta
Progeny_001.fasta Progeny_007.fasta Progeny_013.fasta Progeny_019.fasta
Progeny_002.fasta Progeny_008.fasta Progeny_014.fasta Progeny_020.fasta
Progeny_003.fasta Progeny_009.fasta Progeny_015.fasta P1.fasta
Progeny_004.fasta Progeny_010.fasta Progeny_016.fasta P2.fasta
Progeny_005.fasta Progeny_011.fasta Progeny_017.fasta
Progeny_006.fasta Progeny_012.fasta Progeny_018.fasta
Next, you can finish the genotyping procedure by either (i) executing the integrated pipeline RADtyping .pl (default parameters):
mgb@M:~/djz/$ perl RADtyping.pl -p1 proc_data/P1.fasta -p2 proc_data/P2.fasta -l 27
Ten output files are created in two directories, “ref” and “genotype”.
mgb@M:~/djz/ref$ ls
ref_codom ref_dom HQ_ref_codom HQ_ref_dom
mgb@M:~/djz/genotype$ ls
all_codom all_dom codom_JM dom_JM poly_dodom poly_dom
Or, (ii) going through a few executions step by step:
Step1: Run ref_build.pl to reconstruct the representative reference sites.
mgb@M:~/djz/$ perl ref_build.pl -p1 proc_data/P1.fasta -p2 proc_data/P2.fasta
Reference sites are stored in two output files, “ref/ref_codom” and “ref/ref_dom”.
Step2: Run ref_filter.pl to obtain HQ reference sites.
mgb@M:~/djz/$ perl ref_filter.pl -m P
HQ sites are stored in two output files, “ref/HQ_ref_codom” and “ref/HQ_ref_dom”.
Step3: Run reads_map.pl to map HQ reads to HQ reference sites.
mgb@M:~/djz/$ perl reads_map.pl -l 27
All mapping results are stored in a directory named “reads_mapping”:
mgb@M:~/djz/reads_mapping$ ls
Progeny_001 Progeny_007 Progeny_013 Progeny_019
Progeny_002 Progeny_008 Progeny_014 Progeny_020
Progeny_003 Progeny_009 Progeny_015 P1
Progeny_004 Progeny_010 Progeny_016 P2
Progeny_005 Progeny_011 Progeny_017
Progeny_006 Progeny_012 Progeny_018
Step4: Run codom_calling.pl for performing codominant genotyping.
mgb@M:~/djz/$ perl codom_calling.pl -a 0.05 - p 0.8
Codominant genotypes are stored in two output files, “genotype/all_codom” and “genotype/poly_codom”.
Step5: Run dom_calling.pl for performing dominant genotyping.
mgb@M:~/djz/$ perl dom_calling.pl - p 0.8
Dominant genotyes are stored in two output files, “genotype/all_dom” and “genotype/poly_dom”.
Step6: Run joinmap_trans.pl to transform the genotyping results in a Joinmap-ready format.
mgb@M:~/djz/$ perl joinmap_trans.pl
Two joinmap-format files are “genotype/codom_JM” and “genotype/dom_JM”.
[1] Catchen, J., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J. Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes, Genomes, Genetics 1, 171-182 (2011).
[2] Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966-1967 (2009).
[3] Zerbino, D. R. et al. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18, 821-829 (2008)
[4] Dou, J. et al. Reference-free SNP calling: Improved accuracy by preventing incorrect calls from repetitive genomic regions. Biol. Direct 7, 17 (2012).
[5] Hohenlohe, P. A. et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 6, e1000862 (2010).
For further questions, pleast contact jinzhuang dou (douj@gis.a-star.edu.sg)