Skip to content

[ICML 2022] "ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning"

Notifications You must be signed in to change notification settings

junxia97/ProGCL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning (ICML 2022)

PyTorch implementation for ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning accepted by ICML 2022.

Requirements

  • Python 3.7.4
  • PyTorch 1.7.0
  • torch_geometric 1.5.0
  • tqdm

Training & Evaluation

ProGCL-weight:

python train.py --device cuda:0 --dataset Amazon-Computers --param local:amazon-computers.json --mode weight

ProGCL-mix:

python train.py --device cuda:0 --dataset Amazon-Computers --param local:amazon-computers.json --mode mix

Useful resources for Pretrained Graphs Neural Networks

Citation

@inproceedings{xia2022progcl,
  title={ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning},
  author={Xia, Jun and Wu, Lirong and Wang, Ge and Li, Stan Z.},
  booktitle={International conference on machine learning},
  year={2022},
  organization={PMLR}
}

About

[ICML 2022] "ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages