Skip to content

kartiw/Deploying-ML-model-using-Rest-API

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Logistic Classifier Deployed as Rest API using flask

Files:

  1. iris_classification_model.ipynb : A simple Logistic regression model for Iris dataset
  2. app.py : Flask application to deploy the model and the RESTful API
  3. calling_api.ipynb: Notebook to call the API.

Execution order:

  1. Run the app.py to start the webservice.
  2. Use calling_api.ipynb to call the webservice. Change the 'features' list to predict the flower type. The featues list takes 4 values.

Note: If you wish to use a different model or retrain the model use the iris_classification_model.ipynb to do so.