Skip to content

Pytorch Implemetation for our NAACL2019 Paper "Riemannian Normalizing Flow on Variational Wasserstein Autoencoder for Text Modeling" https://arxiv.org/abs/1904.02399

License

Notifications You must be signed in to change notification settings

kingofspace0wzz/wae-rnf-lm

Repository files navigation

Riemannian Normalizing Flow on WAE

Code for our NAACL2019 Paper "Riemannian Normalizing Flow on Variational Wasserstein Autoencoder for Text Modeling" https://arxiv.org/abs/1904.02399

Author: Prince Zizhuang Wang and William Yang Wang

An example when latent space does not reflect input space. Left: a manifold that is highly curved in the central region. The yellow line is the geodesic (shortest) path connecting two sample points shown on the manifold. Right: The projection of manifold into 2D latent space, where the color brightness indicates curvature with respect to the manifold. The green line is the geodesic path if taking the curvature into account, while the blue line is the geodesic path if we regard latent space as Euclidean. Middle: The corresponding geodesic paths projected back from latent space to manifold. The white line corresponds to the straight geodesic path in Euclidean space. It is far longer than the true geodesic on manifold since it does not take the curvature into account in latent space.

Running the code

Requirements

  • python 3.6
  • pytorch 1.0.0
  • spacy 2.0.12
  • torchtext 0.3.0

Training

train on ptb

$ python main.py --dist normal --kla --mmd --kernel im --flow --n_flows 3 --center --reg im --t 
0.8 --mmd_w 10 --data data/ptb

train on yahoo

$ python main.py --dist normal --embed_dim 512 --hidden_dim 1024 --kla --center --flow --mmd --t 0.8 --mmd_w 10 --reg im --data data/yahoo

train on yelp

$ python main.py --dist normal --kla --center --flow --mmd --t 0.8 --mmd_w 10 --reg im --data data/yelp

Options

Option Usage Value (Range)
kla use kl annealing True or False
center use clusters to compute MMD True or False
flow use Normalizing Flow True or False
MMD use Wasserstein distance True or False
enc_type encoder model lstm or gru
de_type decoder model lstm or gru
t kl divergence weight default = 0.8
mmd_w mmd weight default = 10
dist choice of prior and posterior normal or vmf
kernel choice of kernel for mmd g or im
reg choice of kernel for rnf g or im

Acknowledgement

About

Pytorch Implemetation for our NAACL2019 Paper "Riemannian Normalizing Flow on Variational Wasserstein Autoencoder for Text Modeling" https://arxiv.org/abs/1904.02399

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages