- Project 0 : Introduction to R
- Project 1 : Descriptive statistics, Principal Component Analysis
- Project 2 : Classical multidimensional scaling, Hierarchical clustering, K-Means Clustering
- Project 3 : Euclidian distance classifier, multiple discriminant analysis, K-Nearest Neighbor, Bayesian decision theory
- Discriminant analysis (Quadratic, linear), Naive Bayes Classifier, Linear/Logistic regression, Decision trees