Skip to content

maks5507/cognitive-complexity

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cognitive Complexity Estimation Framework

Author: Maksim Eremeev (me@maksimeremeev.com)

Research: Konstantin Vorontsov, Maksim Eremeev

Papers:

RANLP paper, Overview in Russian

Interactive Demo: TextComplexity.net

This is a framework for testing and experimenting with complexity measures, building and saving models fitted on various reference collections. The library provides efficient parallel processing of reference collections.

Requirements

  1. python >= 3.6
  2. numpy
  3. nltk
  4. pymorphy2
  5. multiprocessing

Installation

The framework supports

python setup.py build
python setup.py install

Progress

  1. Implement the basic ComplexityModel class
  2. Parallelization of fit method
  3. Letter, Syllable, and Word Tokenizers for Russian
  4. Distance-based ComplexityFunction
  5. Morphological and Lexical complexity models
  6. Counter-based ComplexityFunction
  7. Counter-based models
  8. Adaptation of morphological models for English
  9. Syntax models based on UdPipe
  10. Making preprocessing more flexible
  11. setup.py and testing on Ubuntu, OSX
  12. Publishing the Open-Source framework

==== You are here ====

  1. Publishing the ComplexityPipeline implementation to fit the aggregated complexity model
  2. Publishing of distributions for all proposed models and validation data
  3. Enhancement of model weights ... (TBD)

Structure

  1. complexity - main must-import module
  2. tokenizers - most common tokenizers implementation
  3. functions - most common complexity functions implementation
  4. data - all data used for experimenting

Reference Collection Format

ComplexityModel uses reference collection to build empirical distributions. The reference collection has to be provided in strictly fixed format.

  1. Each document of the collection must be saved in the separate .txt file. The name of file does not matter.
  2. All files containing documents of the reference collection must be stored in the single directory.
  3. There should not be empty .txt files

Adjusting the model

Complexity model is a combination of two entities - Tokenizer and ComplexityFunction.

Both Tokenizer and ComplexityFunction are to be passed into constructor of the model.

Tokenizer is instance of some class required to have tokenize method.

tokenize(text) takes the only argument - text, which is a string corresponding to a single document. Returns the list of tokens in order they are situated in give text. If text should be preprocessed in some way, preprocessing steps have to be implemented in tokenize method.

Example:

class Tokenizer:
    def tokenize(self, text):
        return text.split()

ComplexityFunction is instance of the abstract class with the only required method - complexity.

complexity(tokens) takes the output of the tokenize method, i.e. list of tokens as they are steered in the prior text. Method returns list of complexity scores for each token in the same order.

class ComplexityFunction:
    def complexity(self, tokens):
	return [len(token) for token in tokens]

Signatures and arguments

Init

ComplexityModel init options:

  1. tokenizer - Tokenizer instance
  2. complexity_function - ComplexityFunction instance
  3. alphabet - 'full' if alphabet consists of more than one token, 'reduced' otherwise. Default: 'full'

Returns: model instance

Example:

tokenizer = Tokenizer()
complexity_function = ComplexityFunction()
cm = ComplexityModel(tokenizer, complexity_function, alphabet='reduced')

Fit

fit(reference_corpus, n_jobs=4, use_preproc=True, use_stem=True, use_lemm=False, check_length=True, check_stopwords=True)

  1. reference_corpus - path to directory with documents of reference collection. Each document must be presented in a separated *.txt file.
  2. n_jobs - number of processes to process the collection. Default: 4
  3. use_preproc - flag indicating whether to preprocess the reference collection documents before tokenizing. Default: True
  4. use_stem - flag indicating whether to use stemming when preprocessing the reference collection documents. Default: True
  5. use_lemm - flag indicating whether to use lemmatization when preprocessing the reference collection documents. Default: True
  6. check_length - flag indicating whether to filter all words shorter than 3 symbols when preprocessing the reference collection documents. Default: True
  7. check_stopwords - flag indicating whether to filter stopwords when preprocessing the reference collection documents. Default: True

Returns nothing

fit uses multiprocessing to process documents of the reference collection in parallel.

Example:

cm.fit('/wikipedia', n_jobs=10, use_preproc=False, use_stem=False, use_lemm=False, check_stopwords=False, check_stopwords=False)

Predict

predict(texts, gamma=0.95, weights='mean', p=1, use_preproc=True, use_stem=True, use_lemm=False, check_length=True, check_stopwords=True, exp_weights=False, weights_min_shift=False, normalize=False, return_token_complexities=False)

  1. texts - lexts to estimate complexity scores for
  2. gamma - quantile indicator. Default: 0.95
  3. weights - Type of weights to use when counting the scoree. One of following options: 'mean', 'total', 'excessive', 'excessive_mean'. Default: 'mean'. Default: 'mean'
  4. p - power of the weights. Default: 1
  5. use_preproc - lag indicating whether to preprocess text before tokenizing. Must align with the same parameter value used for fitting. Default: True
  6. use_stem - flag indicating whether to use lemmatization when preprocessing the text. Must align with the same parameter value used for fitting. Default: True
  7. use_lemm - power of the weights. Default: False
  8. check_length - flag indicating whether to filter the words shorter than 3 symbols when preprocessing the text. Must align with the same parameter value used for fitting. Default: True
  9. check_stopwords - flag indicating whether to filter the stopwords when preprocessing the text. Must align with the same parameter value used for fitting. Default: True
  10. exp_weights - flag indicating whether to apply exponential transformation to weights. Default: False
  11. weights_min_shift - flag indicating whether to subtract the minimum value from the weights. Default: False
  12. normalize - flag indicating whether to normalize the weights. Default: False
  13. return_token_complexities - flag indicating whether to return tokens complexities score along with the overall text complexity score. Default: False

Returns list of scores for the texts provided.

Accessible examples

All following models were described in

  1. models/letters - distance-based morphological model
    • tokens: letters
    • complexity: distance
  2. models/lexical-distance - distance-based lexical model
    • tokens: words
    • complexity: distance
  3. models/lexical-counter - counter-based lexical model
    • tokens: words
    • complexity: number of occurrences in the reference collection
  4. models/lexical-length- counter-based lexical model
    • tokens: words
    • complexity: length of the word
  5. models/re-syllab - distance-based morphological model for Russian
    • tokens: syllables
    • complexity: distance
  6. models/ru-syllab-sorted - distance-based morphological model for Russian
    • tokens: sorted syllables
    • complexity: distance
  7. models/en-syllab - distance-based morphological model for English
    • tokens: syllables
    • complexity: distance
  8. models/en-syllab-sorted - distance-based morphological model for English
    • tokens: sorted syllables
    • complexity: distance
  9. models/syntax-length - counter-based syntactic model
    • tokens: sentences
    • complexity: maximum length of the syntactic dependency
  10. models/syntax-pos - distance-based syntactic model
    • tokens: syntgams
    • complexity: distance

BibTex

@inproceedings{eremeev19ranlp,
	title={Lexical Quantile-Based Text Complexity Measure},
	author={M. A. Eremeev and Konstantin Vorontsov},
	booktitle={RANLP},
	year={2019}
}

About

Quantile-based approach to estimating cognitive text complexity

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages