Skip to content

Commit

Permalink
Support Inpaint
Browse files Browse the repository at this point in the history
  • Loading branch information
okotaku committed Dec 10, 2023
1 parent 8f08d72 commit f03364b
Show file tree
Hide file tree
Showing 20 changed files with 1,117 additions and 41 deletions.
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -194,6 +194,7 @@ For detailed user guides and advanced guides, please refer to our [Documentation
<li><a href="configs/stable_diffusion_dreambooth/README.md">DreamBooth (CVPR'2023)</a></li>
<li><a href="configs/stable_diffusion_lora/README.md">LoRA (ICLR'2022)</a></li>
<li><a href="configs/distill_sd_dreambooth/README.md">Distill SD DreamBooth (2023)</a></li>
<li><a href="configs/stable_diffusion_inpaint/README.md">Inpaint</a></li>
</ul>
</td>
<td>
Expand All @@ -212,6 +213,7 @@ For detailed user guides and advanced guides, please refer to our [Documentation
<li><a href="configs/lokr/README.md">LoKr (2022)</a></li>
<li><a href="configs/oft/README.md">OFT (NeurIPS'2023)</a></li>
<li><a href="configs/stable_diffusion_xl_controlnetxs/README.md">ControlNet-XS (2023)</a></li>
<li><a href="configs/stable_diffusion_xl_inpaint/README.md">Inpaint</a></li>
</ul>
</td>
<td>
Expand Down
20 changes: 10 additions & 10 deletions configs/_base_/datasets/dog_inpaint.py
Original file line number Diff line number Diff line change
@@ -1,21 +1,21 @@
train_pipeline = [
dict(type="torchvision/Resize", size=512, interpolation="bilinear"),
dict(type="RandomCrop", size=512),
dict(type="RandomHorizontalFlip", p=0.5),
dict(
type="LoadMask",
mask_mode="bbox",
mask_config=dict(
max_bbox_shape=(256, 256),
max_bbox_delta=40,
min_margin=20,
img_shape=512)),
dict(type="torchvision/Resize", size=512, interpolation="bilinear"),
dict(type="RandomCrop", size=512),
dict(type="RandomHorizontalFlip", p=0.5),
min_margin=20)),
dict(type="torchvision/ToTensor"),
dict(type="MaskToTensor"),
dict(type="DumpImage", max_imgs=10, dump_dir="work_dirs/dump"),
dict(type="torchvision/Normalize", mean=[0.5], std=[0.5]),
dict(type="GetMaskedImage"),
dict(type="PackInputs",
input_keys=["img", "mask", "text"]),
input_keys=["img", "mask", "masked_image", "text"]),
]
train_dataloader = dict(
batch_size=4,
Expand All @@ -39,10 +39,10 @@
type="VisualizationHook",
prompt=["a photo of sks dog"] * 4,
image=["https://github.com/okotaku/diffengine/assets/24734142/8e02bd0e-9dcc-49b6-94b0-86ab3b40bc2b"] * 4, # noqa
mask=["work_dirs/dump/1_mask.png"] * 4,
mask=["https://github.com/okotaku/diffengine/assets/24734142/d0de4fb9-9183-418a-970d-582e9324f05d"] * 4, # noqa
by_epoch=False,
width=1024,
height=1024,
width=512,
height=512,
interval=100),
dict(type="PeftSaveHook"),
dict(type="SDCheckpointHook"),
]
50 changes: 50 additions & 0 deletions configs/_base_/datasets/dog_inpaint_xl.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
train_pipeline = [
dict(type="SaveImageShape"),
dict(type="torchvision/Resize", size=1024, interpolation="bilinear"),
dict(type="RandomCrop", size=1024),
dict(type="RandomHorizontalFlip", p=0.5),
dict(type="ComputeTimeIds"),
dict(
type="LoadMask",
mask_mode="bbox",
mask_config=dict(
max_bbox_shape=(512, 512),
max_bbox_delta=80,
min_margin=40)),
dict(type="torchvision/ToTensor"),
dict(type="MaskToTensor"),
dict(type="DumpImage", max_imgs=10, dump_dir="work_dirs/dump"),
dict(type="torchvision/Normalize", mean=[0.5], std=[0.5]),
dict(type="GetMaskedImage"),
dict(type="PackInputs",
input_keys=["img", "mask", "masked_image", "text", "time_ids"]),
]
train_dataloader = dict(
batch_size=1,
num_workers=2,
dataset=dict(
type="HFDreamBoothDataset",
dataset="diffusers/dog-example",
instance_prompt="a photo of sks dog",
pipeline=train_pipeline,
class_prompt=None),
sampler=dict(type="InfiniteSampler", shuffle=True),
)

val_dataloader = None
val_evaluator = None
test_dataloader = val_dataloader
test_evaluator = val_evaluator

custom_hooks = [
dict(
type="VisualizationHook",
prompt=["a photo of sks dog"] * 4,
image=["https://github.com/okotaku/diffengine/assets/24734142/8e02bd0e-9dcc-49b6-94b0-86ab3b40bc2b"] * 4, # noqa
mask=["https://github.com/okotaku/diffengine/assets/24734142/d0de4fb9-9183-418a-970d-582e9324f05d"] * 4, # noqa
by_epoch=False,
width=1024,
height=1024,
interval=100),
dict(type="SDCheckpointHook"),
]
3 changes: 3 additions & 0 deletions configs/_base_/models/stable_diffusion_xl_inpaint.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
model = dict(type="StableDiffusionXLInpaint",
model="diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
gradient_checkpointing=True)
89 changes: 89 additions & 0 deletions configs/stable_diffusion_inpaint/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
# Stable Diffusion Inpaint

[High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)

## Abstract

By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism to control the image generation process without retraining. However, since these models typically operate directly in pixel space, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations. To enable DM training on limited computational resources while retaining their quality and flexibility, we apply them in the latent space of powerful pretrained autoencoders. In contrast to previous work, training diffusion models on such a representation allows for the first time to reach a near-optimal point between complexity reduction and detail preservation, greatly boosting visual fidelity. By introducing cross-attention layers into the model architecture, we turn diffusion models into powerful and flexible generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes possible in a convolutional manner. Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing computational requirements compared to pixel-based DMs.

<div align=center>
<img src="https://github.com/okotaku/diffengine/assets/24734142/d874dc07-af7b-4a88-9629-f3be7c1d2d60"/>
</div>

## Citation

```
@InProceedings{Rombach_2022_CVPR,
author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
title = {High-Resolution Image Synthesis With Latent Diffusion Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {10684-10695}
}
```

## Run Training

Run Training

```
# single gpu
$ mim train diffengine ${CONFIG_FILE}
# multi gpus
$ mim train diffengine ${CONFIG_FILE} --gpus 2 --launcher pytorch
# Example.
$ mim train diffengine configs/stable_diffusion_inpaint/stable_diffusion_inpaint_dog.py
```

## Inference with diffusers

Once you have trained a model, specify the path to the saved model and utilize it for inference using the `diffusers.pipeline` module.

Before inferencing, we should convert weights for diffusers format,

```bash
$ mim run diffengine publish_model2diffusers ${CONFIG_FILE} ${INPUT_FILENAME} ${OUTPUT_DIR} --save-keys ${SAVE_KEYS}
# Example
$ mim run diffengine publish_model2diffusers configs/stable_diffusion_inpaint/stable_diffusion_inpaint_dog.py work_dirs/stable_diffusion_inpaint_dog/iter_1000.pth work_dirs/stable_diffusion_inpaint_dog --save-keys unet
```

Then we can run inference.

```py
import torch
from diffusers import StableDiffusionInpaintPipeline, UNet2DConditionModel
from diffusers.utils import load_image

prompt = 'a photo of sks dog'
img = 'https://github.com/okotaku/diffengine/assets/24734142/8e02bd0e-9dcc-49b6-94b0-86ab3b40bc2b'
mask = 'https://github.com/okotaku/diffengine/assets/24734142/d0de4fb9-9183-418a-970d-582e9324f05d'
checkpoint = 'work_dirs/stable_diffusion_inpaint_dog'

unet = UNet2DConditionModel.from_pretrained(
checkpoint, subfolder='unet', torch_dtype=torch.float16)
pipe = StableDiffusionInpaintPipeline.from_pretrained(
'runwayml/stable-diffusion-inpainting', unet=unet, torch_dtype=torch.float16)
pipe.to('cuda')

image = pipe(
prompt,
load_image(img).convert("RGB"),
load_image(mask).convert("L"),
num_inference_steps=50,
).images[0]
image.save('demo.png')
```

You can see more details on [`docs/source/run_guides/run_sd.md`](../../docs/source/run_guides/run_sd.md#inference-with-diffusers).

## Results Example

#### stable_diffusion_inpaint_dog

![input](https://github.com/okotaku/diffengine/assets/24734142/8e02bd0e-9dcc-49b6-94b0-86ab3b40bc2b)

![mask](https://github.com/okotaku/diffengine/assets/24734142/d0de4fb9-9183-418a-970d-582e9324f05d)

![example](https://github.com/okotaku/diffengine/assets/24734142/f9ec820b-af75-4c74-8c0b-6558a0a19b95)
123 changes: 123 additions & 0 deletions configs/stable_diffusion_xl_inpaint/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
# Stable Diffusion XL Inpaint

[Stable Diffusion XL](https://arxiv.org/abs/2307.01952)

## Abstract

We present SDXL, a latent diffusion model for text-to-image synthesis. Compared to previous versions of Stable Diffusion, SDXL leverages a three times larger UNet backbone: The increase of model parameters is mainly due to more attention blocks and a larger cross-attention context as SDXL uses a second text encoder. We design multiple novel conditioning schemes and train SDXL on multiple aspect ratios. We also introduce a refinement model which is used to improve the visual fidelity of samples generated by SDXL using a post-hoc image-to-image technique. We demonstrate that SDXL shows drastically improved performance compared the previous versions of Stable Diffusion and achieves results competitive with those of black-box state-of-the-art image generators.

<div align=center>
<img src="https://github.com/okotaku/diffengine/assets/24734142/27d4ebad-5705-4500-826f-41f425a08c0d"/>
</div>

## Citation

```
```

## Run Training

Run Training

```
# single gpu
$ mim train diffengine ${CONFIG_FILE}
# multi gpus
$ mim train diffengine ${CONFIG_FILE} --gpus 2 --launcher pytorch
# Example.
$ mim train diffengine configs/stable_diffusion_xl_inpaint/stable_diffusion_xl_inpaint_dog.py
```

## Training Speed

#### Single GPU

Environment:

- A6000 Single GPU
- nvcr.io/nvidia/pytorch:23.10-py3

Settings:

- 1epoch training.

| Model | total time |
| :---------------------------------------: | :--------: |
| stable_diffusion_xl_pokemon_blip (fp16) | 12 m 37 s |
| stable_diffusion_xl_pokemon_blip_xformers | 10 m 6 s |
| stable_diffusion_xl_pokemon_blip_fast | 9 m 47 s |

Note that `stable_diffusion_xl_pokemon_blip_fast` took a few minutes to compile. We will disregard it.

#### Multiple GPUs

Environment:

- A100 x 4 GPUs
- nvcr.io/nvidia/pytorch:23.11-py3

Settings:

- 1epoch training.

| Model | total time |
| :-------------------------------------------------------: | :--------: |
| stable_diffusion_xl_pokemon_blip_fast (BS=4) | 1 m 6 s |
| stable_diffusion_xl_pokemon_blip_deepspeed_stage3 (BS=8) | 1 m 5 s |
| stable_diffusion_xl_pokemon_blip_deepspeed_stage2 (BS=8) | 58 s |
| stable_diffusion_xl_pokemon_blip_colossal (stage=2, BS=8) | 58s |

## Inference with diffusers

Once you have trained a model, specify the path to the saved model and utilize it for inference using the `diffusers.pipeline` module.

Before inferencing, we should convert weights for diffusers format,

```bash
$ mim run diffengine publish_model2diffusers ${CONFIG_FILE} ${INPUT_FILENAME} ${OUTPUT_DIR} --save-keys ${SAVE_KEYS}
# Example
$ mim run diffengine publish_model2diffusers configs/stable_diffusion_xl_inpaint/stable_diffusion_xl_inpaint_dog.py work_dirs/stable_diffusion_xl_inpaint_dog/iter_1000.pth work_dirs/stable_diffusion_xl_inpaint_dog --save-keys unet
```

Then we can run inference.

```py
import torch
from diffusers import AutoPipelineForInpainting, UNet2DConditionModel
from diffusers.utils import load_image

prompt = 'a photo of sks dog'
img = 'https://github.com/okotaku/diffengine/assets/24734142/8e02bd0e-9dcc-49b6-94b0-86ab3b40bc2b'
mask = 'https://github.com/okotaku/diffengine/assets/24734142/d0de4fb9-9183-418a-970d-582e9324f05d'
checkpoint = 'work_dirs/stable_diffusion_xl_inpaint_dog'

unet = UNet2DConditionModel.from_pretrained(
checkpoint, subfolder='unet', torch_dtype=torch.float16)
pipe = AutoPipelineForInpainting.from_pretrained(
'diffusers/stable-diffusion-xl-1.0-inpainting-0.1', unet=unet, torch_dtype=torch.float16)
pipe.to('cuda')

image = pipe(
prompt,
prompt,
load_image(img).convert("RGB"),
load_image(mask).convert("L"),
num_inference_steps=50,
width=1024,
height=1024,
).images[0]
image.save('demo.png')
```

You can see more details on [`docs/source/run_guides/run_xl.md`](../../docs/source/run_guides/run_xl.md#inference-with-diffusers).

## Results Example

#### stable_diffusion_xl_inpaint_dog

![input](https://github.com/okotaku/diffengine/assets/24734142/8e02bd0e-9dcc-49b6-94b0-86ab3b40bc2b)

![mask](https://github.com/okotaku/diffengine/assets/24734142/d0de4fb9-9183-418a-970d-582e9324f05d)

![example](https://github.com/okotaku/diffengine/assets/24734142/a2d20952-bd9f-4893-b5da-4171e24f22e2)
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
_base_ = [
"../_base_/models/stable_diffusion_xl_inpaint.py",
"../_base_/datasets/dog_inpaint_xl.py",
"../_base_/schedules/stable_diffusion_1k.py",
"../_base_/default_runtime.py",
]

optim_wrapper = dict(
_delete_=True,
type="AmpOptimWrapper",
dtype="bfloat16",
optimizer=dict(
type="Adafactor",
lr=1e-5,
weight_decay=1e-2,
scale_parameter=False,
relative_step=False),
clip_grad=dict(max_norm=1.0))
2 changes: 2 additions & 0 deletions diffengine/datasets/transforms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
CLIPImageProcessor,
ComputePixArtImgInfo,
ComputeTimeIds,
GetMaskedImage,
MaskToTensor,
MultiAspectRatioResizeCenterCrop,
RandomCrop,
Expand All @@ -34,4 +35,5 @@
"T5TextPreprocess",
"LoadMask",
"MaskToTensor",
"GetMaskedImage",
]
2 changes: 1 addition & 1 deletion diffengine/datasets/transforms/dump_image.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ def __call__(self, results) -> dict:

if "mask" in results:
mask = results["mask"]
if condition_img.shape[0] in [1, 3]:
if mask.shape[0] in [1, 3]:
mask = mask.permute(1, 2, 0) * 255
mask_out_file = osp.join(self.dump_dir, f"{dump_id}_mask.png")
cv2.imwrite(mask_out_file,
Expand Down
Loading

0 comments on commit f03364b

Please sign in to comment.