Skip to content

Commit

Permalink
[FIX] Invalid escape sequences in docstrings (#36)
Browse files Browse the repository at this point in the history
  • Loading branch information
fsoubelet authored Nov 25, 2024
1 parent 63b8f0c commit 4dd8b48
Show file tree
Hide file tree
Showing 5 changed files with 16 additions and 11 deletions.
4 changes: 4 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,9 @@
# optics_functions Changelog

## Version 0.1.4

- Fixed invalid escape sequences in docstrings that would warn in all calling code.

## Version 0.1.3

- Fixed use of `np.NaN` to ensure compatibility with `numpy 2.0`.
Expand Down
2 changes: 1 addition & 1 deletion optics_functions/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
__title__ = "optics_functions"
__description__ = "Calculate optics parameters from TWISS outputs."
__url__ = "https://github.com/pylhc/optics_functions"
__version__ = "0.1.3"
__version__ = "0.1.4"
__author__ = "pylhc"
__author_email__ = "pylhc@github.com"
__license__ = "MIT"
Expand Down
2 changes: 1 addition & 1 deletion optics_functions/coupling.py
Original file line number Diff line number Diff line change
Expand Up @@ -349,7 +349,7 @@ def _get_weights_from_lengths(df: TfsDataFrame) -> Tuple[float, np.array]:


def check_resonance_relation(df: DataFrame, to_nan: bool = False) -> DataFrame:
"""Checks that \|F1001| >= \|F1010|.
r"""Checks that \|F1001| >= \|F1010|.
If desired, sets the invalid points to NaN. This is only used for checking
in the :func:`~optics_functions.coupling.closest_tune_approach` function,
but can be invoked by the user with ``to_nan = True`` and the resulting
Expand Down
2 changes: 1 addition & 1 deletion optics_functions/rdt.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ def calculate_rdts(df: TfsDataFrame, rdts: Sequence[str],
qx: float = None, qy: float = None, feeddown: int = 0,
complex_columns: bool = True, loop_phases: bool = False,
hamiltionian_terms: bool = False) -> TfsDataFrame:
""" Calculates the Resonance Driving Terms.
r"""Calculates the Resonance Driving Terms.
Eq. (A8) in [FranchiAnalyticFormulas2017]_ .
One might notice that this code implementation has a factor :math:`2 \pi` in the exponential
Expand Down
17 changes: 9 additions & 8 deletions tests/unit/test_coupling.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ def test_closest_tune_approach(
df_twiss[F1001] = df_cmatrix[F1001] # ignoring F1010 in this test as it is bigger than F1001

cta_df = closest_tune_approach(df_twiss, method=cta_method) # only one column
cminus = cta_df.mean().abs()[0]
cminus = cta_df.mean().abs().iloc[0]
relative_error = _relative_error(cminus, _coupling_bump_teapot_cta)

assert relative_error <= max_relative_error_to_teapot
Expand Down Expand Up @@ -176,12 +176,13 @@ def test_coupling_rdt_bump_cmatrix_compare():

def generate_fake_data(n) -> tfs.TfsDataFrame:
qx, qy = 1.31, 1.32
df = tfs.TfsDataFrame(0,
index=[str(i) for i in range(n)],
columns=[S, f"{ALPHA}{X}", f"{ALPHA}{Y}", f"{BETA}{X}", f"{BETA}{Y}",
f"{PHASE_ADV}{X}", f"{PHASE_ADV}{Y}", "R11", "R12", "R21", "R22"],
headers={f"{TUNE}1": qx, f"{TUNE}2": qy}
)
df = tfs.TfsDataFrame(
0.0,
index=[str(i) for i in range(n)],
columns=[S, f"{ALPHA}{X}", f"{ALPHA}{Y}", f"{BETA}{X}", f"{BETA}{Y}",
f"{PHASE_ADV}{X}", f"{PHASE_ADV}{Y}", "R11", "R12", "R21", "R22"],
headers={f"{TUNE}1": qx, f"{TUNE}2": qy},
)

r = np.random.rand(n)
df[S] = np.linspace(0, n, n)
Expand Down Expand Up @@ -211,4 +212,4 @@ def _coupling_bump_teapot_cta() -> float:
df_twiss[F1001] = df_cmatrix[F1001] # ignoring F1010 in this test as it is bigger than F1001

cta_df = closest_tune_approach(df_twiss, method="teapot") # only one column
return cta_df.mean().abs()[0] # this is the cminus
return cta_df.mean().abs().iloc[0] # this is the cminus

0 comments on commit 4dd8b48

Please sign in to comment.