In this project experimented with various MDP and Reinforcement Learning techniques namely value iteration, Q-learning and approximate Q-learning. This is part of Pacman projects developed at UC Berkeley.
---RL
---lab.pdf
---README.md
---report.pdf
Then run the autograder using $python autograder.py
It gave me a score of 25/25.
$python gridworld.py -a value -i 100 -k 10
$python gridworld.py -a value -i 5
$python gridworld.py -a value -i 100 -g BridgeGrid --discount 0.9 --noise 0.2
$python autograder.py -q q3
python gridworld.py -a q -k 5 -m
$python gridworld.py -a q -k 100
$python crawler.py
$python gridworld.py -a q -k 50 -n 0 -g BridgeGrid -e 1
$python pacman.py -p PacmanQAgent -x 2000 -n 2010 -l smallGrid
$python pacman.py -p ApproximateQAgent -x 2000 -n 2010 -l smallGrid
$python pacman.py -p ApproximateQAgent -a extractor=SimpleExtractor -x 50 -n 60 -l mediumGrid
$python pacman.py -p ApproximateQAgent -a extractor=SimpleExtractor -x 50 -n 60 -l mediumClassic