Skip to content

srinadhu/RL_Pacman

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Reinforcement Learning in Pacman

Introduction

In this project experimented with various MDP and Reinforcement Learning techniques namely value iteration, Q-learning and approximate Q-learning. This is part of Pacman projects developed at UC Berkeley.

Directory Structure

---RL

       qlearningAgents.py

       analysis.py

---lab.pdf

---README.md

---report.pdf

Executing

Then run the autograder using $python autograder.py

It gave me a score of 25/25.

Value Iteration

$python gridworld.py -a value -i 100 -k 10

$python gridworld.py -a value -i 5

Bridge Crossing Analysis

$python gridworld.py -a value -i 100 -g BridgeGrid --discount 0.9 --noise 0.2

Policies

$python autograder.py -q q3

Q-Learning

python gridworld.py -a q -k 5 -m

Epsilon Greedy

$python gridworld.py -a q -k 100

$python crawler.py

Bridge Crossing Revisited

$python gridworld.py -a q -k 50 -n 0 -g BridgeGrid -e 1

Q-Learning and Pacman

$python pacman.py -p PacmanQAgent -x 2000 -n 2010 -l smallGrid

Approximate Q-Learning

$python pacman.py -p ApproximateQAgent -x 2000 -n 2010 -l smallGrid

$python pacman.py -p ApproximateQAgent -a extractor=SimpleExtractor -x 50 -n 60 -l mediumGrid

$python pacman.py -p ApproximateQAgent -a extractor=SimpleExtractor -x 50 -n 60 -l mediumClassic

Developed by

Sai Srinadhu K

Releases

No releases published

Packages

No packages published

Languages