-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDefault.py
990 lines (769 loc) · 43.3 KB
/
Default.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
import streamlit as st
import pickle
from streamlit_option_menu import option_menu
import numpy as np
import time
import pandas as pd
import plotly.express as px
from datetime import date
# Implementing the design
st.set_page_config(
page_title="GDP Prediction & Analysis",
page_icon="random",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://vilasrhegde.github.io/',
'Report a bug': "https://www.linkedin.com/in/vilasrhegde/",
'About': "# Made by Vilas Hegde!"
}
)
# Loading the saved Random Forest model
@st.cache_resource(show_spinner=True)
def get_model(model_name):
model = pickle.load(open(model_name,'rb'))
return model
@st.cache_resource(show_spinner=True)
def get_data(name):
data=pd.read_csv(name)
return data
RFmodel=get_model('RFmodel.pkl')
data=get_data('filtered_data.csv')
# ------------------LOGIN---------------------------
st.title("GDP ANALYSIS AND PREDICTION")
import streamlit as st
import bcrypt
import sqlite3
# st.session_state['username']=''
def create_user_table():
conn = sqlite3.connect('users.db')
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS users
(id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT NOT NULL,
password TEXT NOT NULL)''')
conn.commit()
conn.close()
def signup():
if 'username' in st.session_state and len(st.session_state['username'])>0:
st.success(f"Hey {st.session_state['username'].capitalize()}, you are logged in already")
isLog=True
return
st.write("Sign Up")
username = st.text_input("Username")
password = st.text_input("Password", type='password')
confirm_password = st.text_input("Confirm Password", type='password')
if st.button("Signup",type='primary',use_container_width=True):
if password == confirm_password:
conn = sqlite3.connect('users.db')
c = conn.cursor()
hashed_password = bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt()).decode('utf-8')
c.execute("INSERT INTO users (username, password) VALUES (?, ?)", (username, hashed_password))
conn.commit()
conn.close()
st.success("You have successfully created an account!")
st.info("Please login to proceed.")
else:
st.warning("Passwords do not match.")
def login():
# session = get(username='')
if 'username' in st.session_state and len(st.session_state['username'])>0:
st.write("### Hey",':blue[', st.session_state.username.capitalize()+' 👋',']')
isLog=True
return
st.write("Login")
username = st.text_input("Username")
password = st.text_input("Password", type='password')
if st.button("Login",type='primary',use_container_width=True):
conn = sqlite3.connect('users.db')
c = conn.cursor()
c.execute("SELECT * FROM users WHERE username=?", (username,))
result = c.fetchone()
conn.close()
if result:
hashed_password = result[2]
if bcrypt.checkpw(password.encode('utf-8'), hashed_password.encode('utf-8')):
st.session_state['username'] = username
st.success("You have successfully logged in!")
isLog=True
else:
st.warning("Incorrect Password")
st.stop()
else:
st.markdown("## :red[Username not found, Please Sign Up!]")
st.stop()
def logout():
if len(st.session_state['username'])<=0:
st.warning("You have not logged in yet!")
return
st.session_state['username'] = ''
st.success("You have successfully logged out!")
def main():
isLog = False
create_user_table()
menu = ["Login", "Signup", "Logout"]
choice = st.sidebar.selectbox("Select an option", menu)
if choice == "Signup":
signup()
elif choice == "Login":
login()
elif choice == "Logout":
logout()
if __name__ == '__main__':
main()
# hide = True
# # @st.cache_data
# def login(username,password):
# database = {'vilas':'vilas','smruthi':'smruthi','rishith':'rishith','rohan':'rohan'}
# if username in database.keys():
# if database[username]!=password:
# st.error('Username/password did not match ')
# st.stop()
# else:
# st.session_state['username']=username
# hide=False
# return True
# def auth(hide):
# if 'username' not in st.session_state:
# with st.expander("Please fill the below credentials to begin",expanded=hide):
# with st.form("login"):
# # st.write("Please with the credentials to login")
# username=st.text_input('Enter the username','',placeholder='username')
# psw=st.text_input('Enter the password','',placeholder='password',type='password')
# # Every form must have a submit button.
# submitted = st.form_submit_button("**LOGIN**",type='primary',use_container_width=True)
# if submitted:
# hide=False
# login(username,psw)
# return True
# if not username or not psw:
# st.warning('Please do login before performing any operation')
# st.stop()
# if 'username' not in st.session_state:
# auth(hide=True)
# else:
# auth(hide=False)
# st.write(st.session_state.username)
if 'username' in st.session_state and len(st.session_state['username'])>0:
st.sidebar.title('Hi :blue['+ st.session_state.username.capitalize()+'!]')
else:
st.stop()
with st.sidebar:
selected = option_menu(
menu_title="Main menu",
options=["Prediction","Analytics","Recommendation","Help"],
)
st.header(f"{selected}")
# -------------------------------Prediction-----------------------------------------
if selected == 'Prediction':
latest_iteration = st.empty()
bar = st.progress(0)
for i in range(100):
latest_iteration.text(f'App is getting ready... {i+1}%')
bar.progress(i + 1)
time.sleep(0.01)
tab1,tab2 = st.tabs(["Global", "India"])
with tab1:
st.markdown('''
:orange[Disclaimer]
Feel free to change the values to predict GDP per capita of any Region!''')
# INPUT VALUES FROM THE USER
cc1,cc2,cc3 = st.columns(3)
att_popl = st.number_input('Population (Example: 7000000)', min_value=1e4, max_value=2e9, value=2e7)
ac1,ac2= st.columns(2)
with ac1:
att_area = st.slider('Area (sq. Km)', min_value= 2.0, max_value= 17e6, value=6e5, step=1e4)
with ac2:
att_cost = st.slider('Coastline/Area Ratio', min_value= 0, max_value= 800, value=30, step=10)
att_dens = st.slider('Population Density (per sq. mile)', min_value= 0, max_value= 12000, value=400, step=10)
att_migr = st.slider('Annual Net Migration (migrant(s)/1,000 population)', min_value= -20, max_value= 25, value=0, step=2)
att_mort = st.slider('Infant mortality (per 1000 births)', min_value= 0, max_value=195, value=40, step=10)
att_litr = st.slider('Population literacy Percentage', min_value= 0, max_value= 100, value=80, step=5)
att_phon = st.slider('Phones per 1000', min_value= 0, max_value= 1000, value=250, step=25)
with cc1:
att_arab = st.slider('Arable Land (%)', min_value= 0, max_value= 100, value=25, step=2)
with cc2:
att_crop = st.slider('Crops Land (%)', min_value= 0, max_value= 100, value=5, step=2)
with cc3:
att_othr = st.slider('Other Land (%)', min_value= 0, max_value= 100, value=70, step=2)
st.markdown('`Arable, Crops, and Other land are summed up to 100%`')
#Climate
att_clim = st.selectbox('Climate', options=('Mostly hot (like: Egypt and Australia)', 'Mostly hot and Tropical (like: China and Cameroon)', 'Mostly cold and Tropical (like: India)', 'Mostly cold and Tropical (like: India)', ' Mostly cold (like: Argentina and Belgium)'))
if att_clim == 'Mostly hot (like: Egypt and Australia)':
att_clim=1
elif att_clim == 'Mostly hot and Tropical (like: China and Cameroon)':
att_clim=1.5
elif att_clim == 'Mostly tropical (like: The Bahamas and Thailand)':
att_clim=2
elif att_clim == 'Mostly cold and Tropical (like: India)':
att_clim=2.5
elif att_clim == 'Mostly cold (like: Argentina and Belgium)':
att_clim=3
cc1,cc2 = st.columns(2)
with cc1:
att_brth = st.slider('Annual Birth Rate (births/1,000)', min_value= 7, max_value= 50, value=20, step=2)
with cc2:
att_deth = st.slider('Annual Death Rate (deaths/1,000)', min_value= 2, max_value= 30, value=10, step=2)
cc1,cc2,cc3 = st.columns(3)
with cc1:
att_agrc = st.slider('Agricultural Economy', min_value= 0.0, max_value= 1.0, value=0.15, step=0.05)
with cc2:
att_inds = st.slider('Industrial Economy', min_value= 0.0, max_value= 1.0, value=0.25, step=0.05)
with cc3:
att_serv = st.slider('Services Economy', min_value= 0.0, max_value= 1.0, value=0.60, step=0.05)
st.markdown('`Agricultural, Industrial, and Services Economy are summarized to 1`')
att_regn = st.selectbox('Region', options=('ASIA (EX. NEAR EAST)','BALTICS','C.W. OF IND. STATES','EASTERN EUROPE','LATIN AMER. & CARIB','NEAR EAST','NORTHERN AFRICA','NORTHERN AMERICA','OCEANIA','SUB-SAHARAN AFRICA','WESTERN EUROPE'))
if att_regn == "ASIA (EX. NEAR EAST)":
att_regn = 1
elif att_regn == "BALTICS":
att_regn = 2
elif att_regn == "C.W. OF IND. STATES":
att_regn = 3
elif att_regn == "EASTERN EUROPE":
att_regn = 4
elif att_regn == "LATIN AMER. & CARIB":
att_regn = 5
elif att_regn == "NEAR EAST":
att_regn = 6
elif att_regn == "NORTHERN AFRICA":
att_regn = 7
elif att_regn == "NORTHERN AMERICA":
att_regn = 8
elif att_regn == "OCEANIA":
att_regn = 9
elif att_regn == "SUB-SAHARAN AFRICA":
att_regn = 10
elif att_regn == "WESTERN EUROPE":
att_regn = 11
if att_regn == 1:
att_regn_1 = 1
att_regn_2 = att_regn_3 = att_regn_4 = att_regn_5 = att_regn_6 = att_regn_7 = att_regn_8 = att_regn_9 = att_regn_10 = att_regn_11 = 0
elif att_regn == 2:
att_regn_2 = 1
att_regn_1 = att_regn_3 = att_regn_4 = att_regn_5 = att_regn_6 = att_regn_7 = att_regn_8 = att_regn_9 = att_regn_10 = att_regn_11 = 0
elif att_regn == 3:
att_regn_3 = 1
att_regn_1 = att_regn_2 = att_regn_4 = att_regn_5 = att_regn_6 = att_regn_7 = att_regn_8 = att_regn_9 = att_regn_10 = att_regn_11 = 0
elif att_regn == 4:
att_regn_4 = 1
att_regn_1 = att_regn_3 = att_regn_2 = att_regn_5 = att_regn_6 = att_regn_7 = att_regn_8 = att_regn_9 = att_regn_10 = att_regn_11 = 0
elif att_regn == 5:
att_regn_5 = 1
att_regn_1 = att_regn_3 = att_regn_4 = att_regn_2 = att_regn_6 = att_regn_7 = att_regn_8 = att_regn_9 = att_regn_10 = att_regn_11 = 0
elif att_regn == 6:
att_regn_6 = 1
att_regn_1 = att_regn_3 = att_regn_4 = att_regn_5 = att_regn_2 = att_regn_7 = att_regn_8 = att_regn_9 = att_regn_10 = att_regn_11 = 0
elif att_regn == 7:
att_regn_7 = 1
att_regn_1 = att_regn_3 = att_regn_4 = att_regn_5 = att_regn_6 = att_regn_2 = att_regn_8 = att_regn_9 = att_regn_10 = att_regn_11 = 0
elif att_regn == 8:
att_regn_8 = 1
att_regn_1 = att_regn_3 = att_regn_4 = att_regn_5 = att_regn_6 = att_regn_7 = att_regn_2 = att_regn_9 = att_regn_10 = att_regn_11 = 0
elif att_regn == 9:
att_regn_9 = 1
att_regn_1 = att_regn_3 = att_regn_4 = att_regn_5 = att_regn_6 = att_regn_7 = att_regn_8 = att_regn_2 = att_regn_10 = att_regn_11 = 0
elif att_regn == 10:
att_regn_10 = 1
att_regn_1 = att_regn_3 = att_regn_4 = att_regn_5 = att_regn_6 = att_regn_7 = att_regn_8 = att_regn_9 = att_regn_2 = att_regn_11 = 0
else:
att_regn_11 = 1
att_regn_1 = att_regn_3 = att_regn_4 = att_regn_5 = att_regn_6 = att_regn_7 = att_regn_8 = att_regn_9 = att_regn_10 = att_regn_2 = 0
user_input = np.array([att_dens, att_migr,
att_mort, att_litr, att_phon,
att_brth, att_agrc, att_serv,
att_regn_1, att_regn_2, att_regn_3,
att_regn_4, att_regn_5, att_regn_6, att_regn_7,
att_regn_8, att_regn_9, att_regn_10, att_regn_11]).reshape(1,-1)
# st.write(user_input.shape)
if (st.button('__**Predict GDP**__',use_container_width=True,type='primary')):
prediction=RFmodel.predict(user_input)
with st.spinner('Prediction is on the way...'):
time.sleep(2)
with st.container( ):
st.balloons()
st.snow()
st.header(f'The estimated GDP per capita is: `{float(prediction)}` ')
st.success(f'R2 Score of the _Random Forest Regressor_ is: __{0.84}__')
st.info('Generally R2 score __>0.7__ is considered as good', icon="ℹ️")
with tab2:
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import r2_score
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
st.write('## What do you want to predict?')
target = st.selectbox('Target attribute',
options=(
'GDP growth (annual %)','Population, total', 'Population growth (annual %)',
'Life expectancy at birth, total (years)',
'Inflation, GDP deflator (annual %)',
'Agriculture, forestry, and fishing, value added (% of GDP)',
'Industry (including construction), value added (% of GDP)',
'Exports of goods and services (% of GDP)',
'Imports of goods and services (% of GDP)',
'Foreign direct investment, net inflows (BoP, current US$)'
))
# year = st.slider('In how many years from 2020?', step=1,min_value=1,max_value=100,help='We take years from 2020')
# Splitting dataset
df=pd.read_csv('./India/IndData.csv')
train =np.asarray(df.drop(['Year','Military expenditure (% of GDP)', 'Merchandise trade (% of GDP)',target],axis=1))
test=np.asarray(df[target])
X_train, X_test, y_train, y_test = train_test_split(train, test, test_size=0.33, random_state=2)
rgr = LinearRegression()
rgr.fit(X_train,y_train)
pred=rgr.predict(X_test)
# Select a single row from the X_test dataset
x_new = X_test[0, :] # assumes X_test is a pandas DataFrame
# Reshape the data to a 2D array with shape (1, n_features)
x_new = x_new.reshape((1, -1))
pred=rgr.predict(x_new)
st.markdown(f'''
# The Predicted :orange[{target}] is :green[{ format(pred[0].round(3),',') } { 'bn' if target=='Population, total' else '$' if target=='Foreign direct investment, net inflows (BoP, current US$)' else '%' } ]
> Based on data till 2020 using Linear Regression
''')
from sklearn.tree import DecisionTreeRegressor
regressor = DecisionTreeRegressor(random_state=0)
regressor.fit(X_train, y_train)
l=regressor.predict(X_test, check_input=True)
rf = RandomForestRegressor(random_state=42)
# param_grid = {
# "n_estimators": [10, 50, 100],
# "max_depth": [None, 5, 10],
# "min_samples_split": [2, 5, 10],
# }
# grid_search = GridSearchCV(rf, param_grid, cv=5, scoring="r2")
rf.fit(X_train, y_train)
# print("Best hyperparameters:", grid_search.best_params_)
RF_pred = rf.predict(X_test)
from sklearn.svm import SVR
svr = SVR(kernel="rbf")
svr.fit(X_train, y_train)
svr_pred = svr.predict(X_test)
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Scatter(y=pred,
line_color='rgba(255,0,0,1)',
mode='lines+markers',
name='Linear Regression'))
fig.add_trace(go.Scatter(y=l,
line_color='rgb(0,176,246)',
mode='lines+markers',
name='Decision Tree'))
fig.add_trace(go.Scatter(y=svr_pred,
line_color='rgb(170,100,20)',
mode='lines+markers',
name='SVR'))
fig.add_trace(go.Scatter(y=RF_pred,
line_color='rgb(180,116,250)',
mode='lines+markers',
name='Random Forest'))
fig.add_trace(go.Scatter(y=y_test,
line_color='rgb(0,255,0)',
mode='lines',
name='Actual',
line=dict(width=4)))
fig.update_layout(title=f'{target} prediction using different algorithms',
xaxis_title='Values',
yaxis_title='Predicted')
st.plotly_chart(fig,use_container_width=True)
elif selected=='Analytics':
tab1, tabInd, tab2, tab3 = st.tabs(["Regional", "India","EDA", "Performance",])
d=data.groupby('region')['gdp_per_capita'].mean().sort_values()
with tab1:
col1,col2= st.columns(2)
with col1:
st.plotly_chart(px.bar(d, x='gdp_per_capita',title="Rankings of Regions based on GDP per capita",orientation='h'),theme='streamlit',use_container_width=True)
with col2:
st.plotly_chart(px.scatter(data, x="literacy", y="gdp_per_capita",title='GDP per capita v/s Literacy', size='literacy', color="region",
hover_name="country", log_x=True),use_container_width=True)
st.info('__GDP__ of a country is highly dependant upon the __literacy__ and vice versa.')
with col1:
st.plotly_chart(px.scatter(data, x="agriculture", y="gdp_per_capita", color="region",
title='GDP v/s Agriculture (Crops)'),use_container_width=True)
st.info('Poor countries are more dependant upon harvesting crops than developed countris.')
with col2:
st.plotly_chart(px.box(data,x="area",y="gdp_per_capita",points="all"),theme=None,use_container_width=True)
st.info('As the area increased, the GDP did not kept up.')
with col1:
st.plotly_chart(px.bar(data, x='region', y='country'),theme=None,use_container_width=True)
with col2:
st.plotly_chart(px.bar(data, x='region', y='gdp_per_capita',color='country',title="GDP of multiple Regions",),use_container_width=True)
with tab2:
st.sidebar.markdown('### :orange[For Exploratory Data Analysis]')
options = st.sidebar.multiselect(
'Plot your graph by choosing the paremeters',
['region', 'gdp_per_capita', 'net_migration', 'phones'],
['region', 'gdp_per_capita','net_migration'])
if len(options)!=3:
st.warning('Please select only 3.')
st.stop()
else:
st.markdown(f'# The 3D Graph')
# st.write('You selected:', options)
st.plotly_chart(px.scatter_3d(data, x=options[0], y=options[1], z=options[2],color=options[0],height=720),use_container_width=True )
st.plotly_chart(px.scatter_matrix(data, dimensions=data[['population', 'area', 'net_migration', 'gdp_per_capita', 'climate']],width=700, height=720,title="Features relationships",color="gdp_per_capita"),use_container_width=True)
st.info('You can crop and zoom the graph',icon='ℹ️')
st.plotly_chart(px.imshow(data.corr(),text_auto=True, aspect="auto"),theme=None,use_container_width=True)
with st.expander("See Observations"):
st.write('''
### From the above graphs:
- net_migration & gdp_per_capita has good correlations, which means migrants always prefers to move to the countries having better economy and growth which is gdp in our case.
- climate and populations are less correlated, means people avoid extreme weather and climate places
- as area increased the amount of migratants also increased, obvious.
''')
c1,c2 = st.columns(2)
with c1:
st.write('''
- `Strong correlations are`,
1. infant_mortality & birthrate
2. infant_mortality & literacy
3. gdp_per_capita & phones
4. arable & other than crops
5. birthrate & literacy (less literacy = higher the birthrate)
''')
with c2:
st.write('''
- `Weak correlations are`,
1. infant_mortality & agriculture
2. birthrate & phones
3. gdp_per_capita & birthrate
''')
with tab3:
st.header('Performance Awards 🏆')
col1, col2, col3 = st.columns(3)
with col1:
st.write('''
1. _`Random Forest` with Feature selection and NO scaling_
> It did well for Global economy prediction.
- Mean Absolute Error __(MAE)__: 2451.88
- Root Mean Squared Error __(RMSE)__: 3580.53
- R-Squared Score __(R2_Score)__: 0.84''')
with col2:
st.write('''
3. _`Linear Regression` with selected features and scaling_
> It did well for Indian economy prediction.
- Mean Absolute Error __(MAE)__: 2879.521
- Root Mean Squared Error __(RMSE)__:3756.43
- R-Squared Score __(R2_Score)__: 0.83''')
with col3:
st.write('''
5. _`SVM` with feature scaling and selection_
- Mean Absolute Error __(MAE)__: 7040.04
- Root Mean Squared Error __(RMSE)__: 9794.59
- R-Squared Score __(R2_Score)__: -0.16
''')
with col1:
st.write('''
2. _`Gradient Boosting` with selected features and scaling_
- Mean Absolute Error __(MAE)__: 2467.21
- Root Mean Squared Error __(RMSE)__: 3789.30
- R-Squared Score __(R2_Score)__: 0.83''')
with col2:
st.write('''
4. _`Optimised Random Forest`_
- Mean Absolute Error __(MAE)__: 3564.04
- Root Mean Squared Error __(RMSE)__: 5915.82
- R-Squared Score __(R2_Score)__: 0.73''')
with tabInd:
import plotly.graph_objects as go
st.subheader(':orange[Indian] Economy :green[Analysis]')
# Preprocess
df=pd.read_csv('India/IndData.csv')
df = df.rename(columns={'Series Name': 'Year'})
df['GDP (current US$)'] = df['GDP (current US$)'].astype(float).round(3)
tmp=df.rename(columns={
'Population growth (annual %)':'Population',
'Life expectancy at birth, total (years)':'Lifetime',
'GDP growth (annual %)':'GDP',
'Inflation, GDP deflator (annual %)':'Inflation',
'Agriculture, forestry, and fishing, value added (% of GDP)':'AgriForestFish',
'Industry (including construction), value added (% of GDP)':'Industies',
'Exports of goods and services (% of GDP)' :'Exports',
'Imports of goods and services (% of GDP)' :'Imports',
'Military expenditure (% of GDP)':'MilitaryExp',
'Merchandise trade (% of GDP)':'MerchandiseTrade',
'Foreign direct investment, net inflows (BoP, current US$)':'ForeignInvest'
})
t=tmp.drop(columns=['Year','Unnamed: 0','MilitaryExp','Population, total', 'Population', 'Lifetime',
'GDP (current US$)','ForeignInvest','GDP','Inflation'])
new_df = t.melt(var_name='X', value_name='Value', ignore_index=False)
col1,col2 = st.columns(2)
with col1:
st.plotly_chart(px.line(df, x="Year", y="GDP growth (annual %)",markers=True,title='Annual GDP growth of India'),use_container_width=True)
fig = go.Figure()
fig.add_trace(go.Scatter(x=df['Year'], y=df['Population growth (annual %)'],
fill='toself',
fillcolor='rgba(231,107,243,0.7)',
line_color='rgba(255,0,0,1)',
mode='lines+markers',
name='Population growth'))
fig.add_trace(go.Scatter(x=df['Year'], y=df['Life expectancy at birth, total (years)'],
line_color='rgb(0,176,246)',
fill='toself',
fillcolor='rgba(31,50,243,0.2)',
mode='lines+markers',
name='Life expectancy'))
fig.update_layout(title='Life expectancy(Age) and Population growth (%)',
xaxis_title='Year',
yaxis_title='Life expectancy and Population growth')
st.plotly_chart(fig,use_container_width=True)
fig = px.bar(new_df['X'],x='X',y=new_df['Value'], text_auto='.2s',
color=new_df['X'],
height=500,
width=900,
title="% Contribution for GDP by different sectors")
fig.update_traces(textfont_size=12, textangle=0, textposition="outside", cliponaxis=False)
st.plotly_chart(fig,use_container_width=True)
with col2:
fig = go.Figure()
fig.add_trace(go.Scatter(x=df['Year'], y=df['Imports of goods and services (% of GDP)'], name='Imports',
line=dict(color='firebrick', width=4,
dash='dashdot') # dash options include 'dash', 'dot', and 'dashdot'
))
fig.add_trace(go.Scatter(x=df['Year'], y=df['Exports of goods and services (% of GDP)'], name='Exports',
line=dict(color='royalblue', width=4, dash='dot')))
fig.update_layout(title='Import and Export of goods and services (% of GDP)',
xaxis_title='Year',
yaxis_title='Exports/Import of goods and services (% of GDP)')
st.plotly_chart(fig,use_container_width=True)
fig = px.line(df,x='Year',y='Population, total',
markers=True,
title="Total Population of India annually")
fig.update_traces(textfont_size=12,cliponaxis=False)
st.plotly_chart(fig,use_container_width=True)
fig = px.bar(tmp,x='Year',y='ForeignInvest', text_auto='.1s',
title="Year by year Foreign investments of India")
fig.update_traces(textfont_size=12, textangle=0, textposition="outside", cliponaxis=False)
st.plotly_chart(fig,use_container_width=True)
with st.expander("See Observations",expanded=True):
st.write('''
### From the above graphs:
- The GDP growth of India has been declining since 2016, and hit lowest in 2020.
- Our import business is always higher than export, which can't be good always for our economical independance.
- As the decades unfolded, population of India decreased, although life expectancy kept increasing.
- Industries and Merchandise Trading are the two leaders to contributing GDP growth of India.
- Foreign investments are exponentially increasing as the years progressed, which is a very healthy sign for our economy.
''')
elif selected == 'Help':
with st.container():
st.write('''
The :blue[**Gross Domestic Product**] (GDP) is one of the metrics to ensure self-sustained growth for any country.
The total monetary value of goods and services flowing through an economy over time is measured by GDP.
''')
st.write('''
### The goal of our project _Generic GDP Prediction and Analysis_ to find the **:red[Patterns]** inside the taken dataset of multiple countries, and to make the **:blue[Prediction]** using Supervized Machine Learning algorithm. This project ivolves applications of :orange[Data Analysis], :violet[Prediction] and :green[Recommendation] using Machine Learning.
''')
with st.expander('See more about Global dataset'):
st.markdown('''
`It has 20 columns and 227 rows (countries)`
`Area`: sq.mi
`Population` density: per sq.mi
`Coastline`: coast/area ratio
`Infant mortality`: per 1000 births
`GDP`: $ per capita
`Phones`: per 1000
`Literacy,Arable,Crops,Other`: percentages (%)
''')
st.write('''
# Takeaways from this project:
1. Basic authentication system.
2. Data prediction based on given values.
3. Data visualization by the interactive and 3D graphs.
4. Comparative analysis of multiple supervised algorithms.
5. Getting recommended values to improve the GDP of selected country.
6. Some important realizations of relationships between multiple features.
7. Indian economy analysis and prediction of any feature.
''')
st.markdown('''
> :blue[Source:] All these data sets taken up from the US government and World Bank open data.
### What inspired us to do this project?
Understanding of economy and growth of all countries is an essential for all citizens.
As we are progressing towards machine learning and artificial intelligence era, it is helping us to
understand complex problems having good amount of data.
The data analysis and engineering is very essential and critical in modern day world.
Data science can provide excellent insight of data using patterns, trends and relationship between
multiple parameters, which would be impossible for any human being to manually calculate them by having
data in rows and columnar fashion.
This process of understanding GDP of any country's and providing options to change parameters to predict its future
value became very interesting topic for us. We want to provide some suggestions such as area, sectors to improve any
country's GDP per capita.
''')
st.write('''
### Methodology
:blue[Step 1]. Identifying the :red[research goal] that our project aims and context to deliver and measure of success.
:blue[Step 2]: Data can be stored in a :red[variety of formats], from plain text files to database tables. The objective now is to acquire the related data. Realize the importance and sensitivity of data, and often have norms in place to ensure that everyone has access to just what they want.
:blue[Step 3]: Data Cleansing integrating, and transforming data are the main steps in :red[data preparation]. However, the clean and validated information is gathered from open source. The dataset is clean and hence can be used as it is
:blue[Step 4]: This stage focuses on :red[data exploration]. Extra Trees Regressor class is used to implement a Meta estimator that fits several decision trees on various sub samples. We are also using Plotly visual analysis tool for detailed data exploration.
:blue[Step 5]: Model is designed with clean data and a :red[clear understanding of the content] in order to make better predictions, identify objects, or gain an understanding of the system to model.
''')
st.write('''
### Validation
- The datapoints are near to actual values with the limited data that we have
- Altough there are slight dissimilarities, did not ruin our analysis
- Values are bit OLD, not updated to this date. (population, areas, phones etc.)
''')
st.markdown(f":red[©️ Vilas Hegde - {date.today().year}]")
elif selected=='Recommendation':
tab1,tab2 = st.tabs(["Global", "India"])
df = pd.read_csv('./India/IndData.csv')
df=df.drop(columns=['Unnamed: 0'])
with tab1:
country = st.selectbox(
'Choose a country',
data.country.unique()
)
correlation_matrix = data.corr()['gdp_per_capita']
corr_values_sorted = correlation_matrix.sort_values(ascending=False)
# st.write(corr_values_sorted)
# st.stop()
# st.table(corr_values_sorted)
# st.plotly_chart(px.imshow(correlation_matrix,
# labels=dict(x="Columns", y="Columns", color="Correlation"),
# x=correlation_matrix.columns,
# y=correlation_matrix.columns,
# color_continuous_scale='RdBu',
# zmin=-1,
# zmax=1))
selected_features = corr_values_sorted[(corr_values_sorted >= 0.5) | (corr_values_sorted <= -0.5)].index.tolist()
# st.write(selected_features)
selected_data_table=data[selected_features[1:]].loc[data.country==country]
selected_data_table = selected_data_table.rename(index={0: country})
# Rename the index and give it a name
selected_data_table= selected_data_table.rename_axis('Country').reset_index()
selected_data_table['Country']=country
gdp=data.gdp_per_capita[data['country']==country]
target_value = st.slider(f"Your expectation to reach GDP of {country}", min_value=float(gdp), max_value=99999.0, value=None, step=1.0, format=None, key=None, help='You predict the GDP, and we will recommend the ways to get to there.', on_change=None, args=None, kwargs=None,disabled=False, label_visibility="visible")
if (target_value > float(gdp)):
percentage_increase = ((target_value - float(gdp)) / float(gdp)) * 100
st.write(f'''
`{int(percentage_increase)}% increase`
''')
col1,col2=st.columns(2)
with col1:
st.metric(label=f"GDP in 2006",value=gdp,delta=float(gdp)-target_value)
with col2:
st.metric(label=f"Expectated GDP",value=target_value,delta=target_value - float(gdp))
selected_data_table.columns = ['Country','Phones/capita','Service', 'Literacy', 'Agriculture', 'Infant_mortality', 'Birthrate']
# Display the DataFrame in a Streamlit table
st.subheader('Data that are in our dataset:')
st.write(selected_data_table.to_html(index=False), unsafe_allow_html=True)
with st.expander('Recommended results',expanded=True):
col1,col2= st.columns(2)
with col1:
improve={'Phones':selected_data_table['Phones/capita'][0],
'Service':selected_data_table['Service'][0],
'Literacy':selected_data_table['Literacy'][0]}
# st.json(improve)
for i,val in improve.items():
improve[i] = val * (1 + (int(percentage_increase) / 100))
# st.write(i,val)
# st.json(improve,expanded=False)
st.header(':green[Improve] :arrow_up:')
for i,val in improve.items():
st.subheader(f"{i} by :green[{val.round(2)}] units")
# st.write(i,val)
with col2:
decrease={'Birthrate':selected_data_table['Birthrate'][0],
'Infant Mortality':selected_data_table['Infant_mortality'][0],
'Agriculture':selected_data_table['Agriculture'][0]}
# st.json(decrease)
for i,val in decrease.items():
decrease[i] = val * (1 + (int(-percentage_increase) / 100))
# st.write(i,val)
# st.json(decrease,expanded=False)
st.header(':orange[Decrease] :arrow_down:')
for i,val in decrease.items():
st.subheader(f"{i} by :red[{val.round(2)}] units")
with st.expander('View impactness of features',expanded=False):
col1,col2= st.columns(2)
with col1:
st.header('High positive impact')
st.info('These are directly proportional to GDP', icon="📈")
for i in selected_features[1:4]:
st.success('__'+i.capitalize()+'__')
with col2:
st.header('High negative impact')
st.info('These are inversely proportional to GDP', icon="📉")
for i in selected_features[-1:-4:-1]:
st.error('__'+i.capitalize()+'__')
with tab2:
# df=df.drop(columns=['Unnamed: 0'])
# st.table(df.head())
correlation_matrix = df.corr()['GDP (current US$)']
# correlation_matrix=correlation_matrix.drop(columns=['Unnamed: 0'])
corr_values_sorted = correlation_matrix.sort_values(ascending=False)
selected_features = corr_values_sorted[(corr_values_sorted >= 0.5) | (corr_values_sorted <= -0.5)].index.tolist()
selected_features.remove('Year')
selected_data_table=df[selected_features[1:]].loc[df['Year']==2020]
# selected_data_table=selected_data_table.drop(columns=['Unnamed: 0'])
gdp=df['GDP (current US$)'][df['Year']==2020]
gdp=float(gdp)
if gdp >= 1000000000:
gdp= str(gdp/1000000000)[:4] + ' B.'
elif gdp >= 1000000:
gdp= str(gdp/1000000)[:4] + ' M.'
st.sidebar.metric(value=gdp,label="India's GDP in 2020")
target_value= st.slider('How much GDP you want India to reach?',min_value=float(gdp[:3]),max_value=10.0,step=.5)
if (target_value > float(gdp[:3])):
percentage_increase = ((target_value - float(gdp[:3])) / float(gdp[:3])) * 100
st.write(f'''
`{int(percentage_increase)}% increase`
''')
col1,col2=st.columns(2)
with col1:
st.metric(label=f"GDP in 2020",value=gdp,delta=float(gdp[:3])-target_value)
with col2:
st.metric(label=f"Expectated GDP",value=str(target_value)+' B.',delta=target_value - float(gdp[:3]))
st.subheader('Data that are in our dataset:')
st.write(selected_data_table.to_html(index=False), unsafe_allow_html=True)
with st.expander('Recommended results',expanded=True):
col1,col2= st.columns(2)
# st.table(selected_data_table)
with col1:
improve={'Life expectancy at birth, total (years)':float(selected_data_table['Life expectancy at birth, total (years)']),
'Population, total':float(selected_data_table['Population, total']),
'Merchandise trade (% of GDP)':float(selected_data_table['Merchandise trade (% of GDP)']),
'Foreign direct investment, net inflows (BoP, current US$)':float(selected_data_table['Foreign direct investment, net inflows (BoP, current US$)']),
'Imports of goods and services (% of GDP)':float(selected_data_table['Imports of goods and services (% of GDP)']),
'Exports of goods and services (% of GDP)':float(selected_data_table['Exports of goods and services (% of GDP)']),
'Agriculture, forestry, and fishing, value added (% of GDP)':float(selected_data_table['Agriculture, forestry, and fishing, value added (% of GDP)'])
}
# # st.json(improve)
for i,val in improve.items():
if val >= 1000000000:
val = val * (1 + (int(percentage_increase) / 100))
val= str(val/1000000000)[:4] + ' B.'
improve[i]=val
else:
improve[i] = val * (1 + (int(percentage_increase) / 100))
# st.write(i,val)
# st.json(improve,expanded=False)
st.header(':green[Improve] :arrow_up:')
for i,val in improve.items():
st.subheader(f"{i} by :green[{val}] units")
# st.write(i,val)
with col2:
decrease={'Population growth (annual %)':float(selected_data_table['Population growth (annual %)']),
'Agriculture, forestry, and fishing, value added (% of GDP)':float(selected_data_table['Agriculture, forestry, and fishing, value added (% of GDP)']),
}
# st.json(decrease)
for i,val in decrease.items():
val = val * (1 + (int(-percentage_increase) / 100))
decrease[i] = abs(val)
# st.write(i,val)
# st.json(decrease,expanded=False)
st.header(':orange[Decrease] :arrow_down:')
for i,val in decrease.items():
st.subheader(f"{i} by :red[{str(val)[:4]}] %")
with st.expander('View impactness of features',expanded=False):
col1,col2= st.columns(2)
# st.table(corr_values_sorted)
with col1:
st.header('High positive impact')
st.info('These are directly proportional to GDP', icon="📈")
for i in selected_features[1:8]:
st.success('__'+i.capitalize()+'__')
with col2:
st.header('High negative impact')
st.info('These are inversely proportional to GDP', icon="📉")
for i in selected_features[-1:-3:-1]:
st.error('__'+i.capitalize()+'__')